0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ZYNQ SOC案例開發(fā):AXI DMA使用解析及環(huán)路測試

電子設(shè)計 ? 來源:csdn ? 作者:沒落騎士 ? 2020-12-31 09:52 ? 次閱讀

一、AXI DMA介紹

本篇博文講述AXI DMA的一些使用總結(jié),硬件IP子系統(tǒng)搭建與SDK C代碼封裝參考米聯(lián)客ZYNQ教程。若想讓ZYNQ的PS與PL兩部分高速數(shù)據(jù)傳輸,需要利用PS的HP(高性能)接口通過AXI_DMA完成數(shù)據(jù)搬移,這正符合PG021 AXI DMA v7.1 LogiCORE IP Product Guide中介紹的AXI DMA的應(yīng)用場景:The AXI DMA provides high-speed data movement between system memory and an AXI4-Stream-based target IP such as AXI Ethernet.

如圖,AXI DMA主要包括Memory Map和 Stream兩部分接口,前者連接PS子系統(tǒng),后者則連接帶有流接口的PL IP核。

o4YBAF9uKIOATJUNAAE0P3Z7-_o177.png

其最簡單的事直接寄存器模式(Simple DMA),這里需要注意地址對齊的問題:當(dāng)沒有使能地址重對齊的情況下,如果AXI Memory Map數(shù)據(jù)位寬是32bit,則搬移數(shù)據(jù)所在地址必須在0x0,0x4,0x8等起始地址上。接下來關(guān)注DMA IP核配置界面主要參數(shù)

pIYBAF9uKIaAYldxAAE4qoOga5I101.png

AXI DMA可以有兩個傳輸方向:讀通道和寫通道,依次為MM2S和S2MM方向。也就是說“讀”和“寫”是DMA主動對CPU發(fā)起的操作。重點查看以下幾個參數(shù):

1 Width of Buffer Length Register:

在直接寄存器模式下,它指定在MM2S_LENGTH和S2MM_LENGTH寄存器的有效比特數(shù)。MM2S_LENGTH寄存器指定了MM2S通道傳輸數(shù)據(jù)字節(jié)數(shù),當(dāng)CPU寫入非零值時開始進(jìn)行PS到PL的數(shù)據(jù)搬移,而S2MM_LENGTH對應(yīng)另一個數(shù)據(jù)流方向。比特數(shù)直接與對應(yīng)寄存器可寫入的最大數(shù)直接相關(guān),傳輸最大字節(jié)數(shù)= 2^(Width of Buffer Length Register)。此處保持默認(rèn)14bit,也就是說啟動DMA傳輸?shù)淖畲髷?shù)據(jù)量是16384byte。

2 Memory Map Data Width:

該參數(shù)指定了Memory Map側(cè)數(shù)據(jù)接口寬度,選定32bit后搬移數(shù)據(jù)所在內(nèi)存地址必須與4對齊。

3 Max Burst Size:

之前在講解PS子系統(tǒng)內(nèi)部的DMA時介紹過DMA的Burst概念,即分批次傳輸數(shù)據(jù)塊。官方IP核文檔解釋為:

o4YBAF9uKIeAbLC0AAC8N-b_FIg486.png

理解起來burst size確定了突發(fā)周期的最大數(shù)值,也就是burst size越大,突發(fā)粒度越大(單次傳輸?shù)臄?shù)據(jù)個數(shù)越多)。這與PS端DMA有所區(qū)別,顯然與 PS DMA的burst length意義相近。筆者也進(jìn)行過嘗試,當(dāng)啟動傳輸數(shù)據(jù)量相同時,burst size設(shè)置較大情況下,每批次傳輸數(shù)據(jù)量更多。

二、AXI DMA Loop IP子系統(tǒng)

在利用ZYNQ搭建系統(tǒng)時,經(jīng)常需要利用各種IP核做所謂的“計算加速”,將重復(fù)性高 計算量大 占用較大CPU資源的底層處理交給各個IP核完成。這時PS ->DMA ->PL -> DMA -> PS的環(huán)路架構(gòu)非常適用。這里使用AXI Stream Data FIFO代替自定義IP核作為演示,硬件IP子系統(tǒng)如下:

pIYBAF9uKI2ASmNmAAUnucDov-k027.png

三、SDK 官方demo解析

首先分析下官方的demo。

pIYBAF9uKI-ABMg7AAE0T6naMPY767.png

/******************************************************************************
*
* Copyright (C) 2010 - 2016 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xaxidma_example_simple_intr.c
*
* This file demonstrates how to use the xaxidma driver on the Xilinx AXI
* DMA core (AXIDMA) to transfer packets.in interrupt mode when the AXIDMA core
* is configured in simple mode
*
* This code assumes a loopback hardware widget is connected to the AXI DMA
* core for data packet loopback.
*
* To see the debug print, you need a Uart16550 or uartlite in your system,
* and please set "-DDEBUG" in your compiler options. You need to rebuild your
* software executable.
*
* Make sure that MEMORY_BASE is defined properly as per the HW system. The
* h/w system built in Area mode has a maximum DDR memory limit of 64MB. In
* throughput mode, it is 512MB. These limits are need to ensured for
* proper operation of this code.
*
*
*

 * MODIFICATION HISTORY:
 *
 * Ver   Who  Date     Changes
 * ----- ---- -------- -------------------------------------------------------
 * 4.00a rkv  02/22/11 New example created for simple DMA, this example is for
 *                  simple DMA,Added interrupt support for Zynq.
 * 4.00a srt  08/04/11 Changed a typo in the RxIntrHandler, changed
 *               XAXIDMA_DMA_TO_DEVICE to XAXIDMA_DEVICE_TO_DMA
 * 5.00a srt  03/06/12 Added Flushing and Invalidation of Caches to fix CRs
 *               648103, 648701.
 *               Added V7 DDR Base Address to fix CR 649405.
 * 6.00a srt  03/27/12 Changed API calls to support MCDMA driver.
 * 7.00a srt  06/18/12 API calls are reverted back for backward compatibility.
 * 7.01a srt  11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum
 *               DDR memory limit of the h/w system built with Area mode
 * 7.02a srt  03/01/13 Updated DDR base address for IPI designs (CR 703656).
 * 9.1   adk  01/07/16 Updated DDR base address for Ultrascale (CR 799532) and
 *               removed the defines for S6/V6.
 * 9.2   vak  15/04/16 Fixed compilation warnings in the example
 * 

*
* ***************************************************************************
*/

/***************************** Include Files *********************************/

#include "xaxidma.h"
#include "xparameters.h"
#include "xil_exception.h"
#include "xdebug.h"

#ifdef XPAR_UARTNS550_0_BASEADDR
#include "xuartns550_l.h" /* to use uartns550 */
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#include "xintc.h"
#else
#include "xscugic.h"
#endif

/************************** Constant Definitions *****************************/

/*
* Device hardware build related constants.
*/

#define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID

#ifdef XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#elif XPAR_MIG7SERIES_0_BASEADDR
#define DDR_BASE_ADDR XPAR_MIG7SERIES_0_BASEADDR
#elif XPAR_MIG_0_BASEADDR
#define DDR_BASE_ADDR XPAR_MIG_0_BASEADDR
#elif XPAR_PSU_DDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_PSU_DDR_0_S_AXI_BASEADDR
#endif

#ifndef DDR_BASE_ADDR
#warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, /
DEFAULT SET TO 0x01000000
#define MEM_BASE_ADDR 0x01000000
#else
#define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000)
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#define RX_INTR_ID XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID
#else
#define RX_INTR_ID XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
#endif

#define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00100000)
#define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00300000)
#define RX_BUFFER_HIGH (MEM_BASE_ADDR + 0x004FFFFF)

#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID
#else
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#endif

#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC XIntc
#define INTC_HANDLER XIntc_InterruptHandler
#else
#define INTC XScuGic
#define INTC_HANDLER XScuGic_InterruptHandler
#endif

/* Timeout loop counter for reset
*/
#define RESET_TIMEOUT_COUNTER 10000

#define TEST_START_VALUE 0xC
/*
* Buffer and Buffer Descriptor related constant definition
*/
#define MAX_PKT_LEN 0x100

#define NUMBER_OF_TRANSFERS 10

/* The interrupt coalescing threshold and delay timer threshold
* Valid range is 1 to 255
*
* We set the coalescing threshold to be the total number of packets.
* The receive side will only get one completion interrupt for this example.
*/

/**************************** Type Definitions *******************************/

/***************** Macros (Inline Functions) Definitions *********************/

/************************** Function Prototypes ******************************/
#ifndef DEBUG
extern void xil_printf(const char *format, ...);
#endif

#ifdef XPAR_UARTNS550_0_BASEADDR
static void Uart550_Setup(void);
#endif

static int CheckData(int Length, u8 StartValue);
static void TxIntrHandler(void *Callback);
static void RxIntrHandler(void *Callback);

static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId);
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId);

/************************** Variable Definitions *****************************/
/*
* Device instance definitions
*/

static XAxiDma AxiDma; /* Instance of the XAxiDma */

static INTC Intc; /* Instance of the Interrupt Controller */

/*
* Flags interrupt handlers use to notify the application context the events.
*/
volatile int TxDone;
volatile int RxDone;
volatile int Error;

/*****************************************************************************/
/**
*
* Main function
*
* This function is the main entry of the interrupt test. It does the following:
* Set up the output terminal if UART16550 is in the hardware build
* Initialize the DMA engine
* Set up Tx and Rx channels
* Set up the interrupt system for the Tx and Rx interrupts
* Submit a transfer
* Wait for the transfer to finish
* Check transfer status
* Disable Tx and Rx interrupts
* Print test status and exit
*
* @param None
*
* @return
* - XST_SUCCESS if example finishes successfully
* - XST_FAILURE if example fails.
*
* @note None.
*
******************************************************************************/
int main(void)
{
int Status;
XAxiDma_Config *Config;
int Tries = NUMBER_OF_TRANSFERS;
int Index;
u8 *TxBufferPtr;
u8 *RxBufferPtr;
u8 Value;

TxBufferPtr = (u8 *)TX_BUFFER_BASE ;
RxBufferPtr = (u8 *)RX_BUFFER_BASE;
/* Initial setup for Uart16550 */
#ifdef XPAR_UARTNS550_0_BASEADDR

Uart550_Setup();

#endif

xil_printf("/r/n--- Entering main() --- /r/n");

Config = XAxiDma_LookupConfig(DMA_DEV_ID);
if (!Config) {
xil_printf("No config found for %d/r/n", DMA_DEV_ID);

return XST_FAILURE;
}

/* Initialize DMA engine */
Status = XAxiDma_CfgInitialize(&AxiDma, Config);

if (Status != XST_SUCCESS) {
xil_printf("Initialization failed %d/r/n", Status);
return XST_FAILURE;
}

if(XAxiDma_HasSg(&AxiDma)){
xil_printf("Device configured as SG mode /r/n");
return XST_FAILURE;
}

/* Set up Interrupt system */
Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID, RX_INTR_ID);
if (Status != XST_SUCCESS) {

xil_printf("Failed intr setup/r/n");
return XST_FAILURE;
}

/* Disable all interrupts before setup */

XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DMA_TO_DEVICE);

XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DEVICE_TO_DMA);

/* Enable all interrupts */
XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DMA_TO_DEVICE);

XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
XAXIDMA_DEVICE_TO_DMA);

/* Initialize flags before start transfer test */
TxDone = 0;
RxDone = 0;
Error = 0;

Value = TEST_START_VALUE;

for(Index = 0; Index TxBufferPtr[Index] = Value;

Value = (Value + 1) & 0xFF;
}

/* Flush the SrcBuffer before the DMA transfer, in case the Data Cache
* is enabled
*/
Xil_DCacheFlushRange((UINTPTR)TxBufferPtr, MAX_PKT_LEN);
#ifdef __aarch64__
Xil_DCacheFlushRange((UINTPTR)RxBufferPtr, MAX_PKT_LEN);
#endif

/* Send a packet */
for(Index = 0; Index

Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) RxBufferPtr,
MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA);

if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) TxBufferPtr,
MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);

if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

/*
* Wait TX done and RX done
*/
while (!TxDone && !RxDone && !Error) {
/* NOP */
}

if (Error) {
xil_printf("Failed test transmit%s done, "
"receive%s done/r/n", TxDone? "":" not",
RxDone? "":" not");

goto Done;

}

/*
* Test finished, check data
*/
Status = CheckData(MAX_PKT_LEN, 0xC);
if (Status != XST_SUCCESS) {
xil_printf("Data check failed/r/n");
goto Done;
}
}

xil_printf("AXI DMA interrupt example test passed/r/n");

/* Disable TX and RX Ring interrupts and return success */

DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID);

Done:
xil_printf("--- Exiting main() --- /r/n");

return XST_SUCCESS;
}

#ifdef XPAR_UARTNS550_0_BASEADDR
/*****************************************************************************/
/*
*
* Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8
*
* @param None
*
* @return None
*
* @note None.
*
******************************************************************************/
static void Uart550_Setup(void)
{

XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR,
XPAR_XUARTNS550_CLOCK_HZ, 9600);

XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR,
XUN_LCR_8_DATA_BITS);
}
#endif

/*****************************************************************************/
/*
*
* This function checks data buffer after the DMA transfer is finished.
*
* We use the static tx/rx buffers.
*
* @param Length is the length to check
* @param StartValue is the starting value of the first byte
*
* @return
* - XST_SUCCESS if validation is successful
* - XST_FAILURE if validation is failure.
*
* @note None.
*
******************************************************************************/
static int CheckData(int Length, u8 StartValue)
{
u8 *RxPacket;
int Index = 0;
u8 Value;

RxPacket = (u8 *) RX_BUFFER_BASE;
Value = StartValue;

/* Invalidate the DestBuffer before receiving the data, in case the
* Data Cache is enabled
*/
#ifndef __aarch64__
Xil_DCacheInvalidateRange((u32)RxPacket, Length);
#endif

for(Index = 0; Index if (RxPacket[Index] != Value) {
xil_printf("Data error %d: %x/%x/r/n",
Index, RxPacket[Index], Value);

return XST_FAILURE;
}
Value = (Value + 1) & 0xFF;
}

return XST_SUCCESS;
}

/*****************************************************************************/
/*
*
* This is the DMA TX Interrupt handler function.
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then sets the TxDone.flag
*
* @param Callback is a pointer to TX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void TxIntrHandler(void *Callback)
{

u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);

/* Acknowledge pending interrupts */

XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {

return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/*
* Reset should never fail for transmit channel
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if (XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If Completion interrupt is asserted, then set the TxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

TxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then it sets the RxDone flag.
*
* @param Callback is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);

/* Acknowledge pending interrupts */
XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/* Reset could fail and hang
* NEED a way to handle this or do not call it??
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if(XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If completion interrupt is asserted, then set RxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

RxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This function setups the interrupt system so interrupts can occur for the
* DMA, it assumes INTC component exists in the hardware system.
*
* @param IntcInstancePtr is a pointer to the instance of the INTC.
* @param AxiDmaPtr is a pointer to the instance of the DMA engine
* @param TxIntrId is the TX channel Interrupt ID.
* @param RxIntrId is the RX channel Interrupt ID.
*
* @return
* - XST_SUCCESS if successful,
* - XST_FAILURE.if not succesful
*
* @note None.
*
******************************************************************************/
static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId)
{
int Status;

#ifdef XPAR_INTC_0_DEVICE_ID

/* Initialize the interrupt controller and connect the ISRs */
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {

xil_printf("Failed init intc/r/n");
return XST_FAILURE;
}

Status = XIntc_Connect(IntcInstancePtr, TxIntrId,
(XInterruptHandler) TxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {

xil_printf("Failed tx connect intc/r/n");
return XST_FAILURE;
}

Status = XIntc_Connect(IntcInstancePtr, RxIntrId,
(XInterruptHandler) RxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {

xil_printf("Failed rx connect intc/r/n");
return XST_FAILURE;
}

/* Start the interrupt controller */
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {

xil_printf("Failed to start intc/r/n");
return XST_FAILURE;
}

XIntc_Enable(IntcInstancePtr, TxIntrId);
XIntc_Enable(IntcInstancePtr, RxIntrId);

#else

XScuGic_Config *IntcConfig;

/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == IntcConfig) {
return XST_FAILURE;
}

Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig,
IntcConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}

XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3);

XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3);
/*
* Connect the device driver handler that will be called when an
* interrupt for the device occurs, the handler defined above performs
* the specific interrupt processing for the device.
*/
Status = XScuGic_Connect(IntcInstancePtr, TxIntrId,
(Xil_InterruptHandler)TxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}

Status = XScuGic_Connect(IntcInstancePtr, RxIntrId,
(Xil_InterruptHandler)RxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}

XScuGic_Enable(IntcInstancePtr, TxIntrId);
XScuGic_Enable(IntcInstancePtr, RxIntrId);

#endif

/* Enable interrupts from the hardware */

Xil_ExceptionInit();
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)INTC_HANDLER,
(void *)IntcInstancePtr);

Xil_ExceptionEnable();

return XST_SUCCESS;
}

/*****************************************************************************/
/**
*
* This function disables the interrupts for DMA engine.
*
* @param IntcInstancePtr is the pointer to the INTC component instance
* @param TxIntrId is interrupt ID associated w/ DMA TX channel
* @param RxIntrId is interrupt ID associated w/ DMA RX channel
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId)
{
#ifdef XPAR_INTC_0_DEVICE_ID
/* Disconnect the interrupts for the DMA TX and RX channels */
XIntc_Disconnect(IntcInstancePtr, TxIntrId);
XIntc_Disconnect(IntcInstancePtr, RxIntrId);
#else
XScuGic_Disconnect(IntcInstancePtr, TxIntrId);
XScuGic_Disconnect(IntcInstancePtr, RxIntrId);
#endif
}

xaxidma_example_simple_intr.c

主函數(shù)中依次完成了:DMA初始化,建立中斷系統(tǒng),使能DMA中斷,初始化標(biāo)志位及發(fā)送數(shù)據(jù),啟動DMA傳輸以及數(shù)據(jù)檢測。中斷部分的內(nèi)容與PS DMA非常相近,傳輸完成后進(jìn)入的中斷函數(shù)中僅置位了發(fā)送或接收完成標(biāo)志位:
static void TxIntrHandler(void *Callback)
{

u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);

/* Acknowledge pending interrupts */

XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {

return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/*
* Reset should never fail for transmit channel
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if (XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If Completion interrupt is asserted, then set the TxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

TxDone = 1;
}
}

/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* is present, then it sets the RxDone flag.
*
* @param Callback is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
u32 IrqStatus;
int TimeOut;
XAxiDma *AxiDmaInst = (XAxiDma *)Callback;

/* Read pending interrupts */
IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);

/* Acknowledge pending interrupts */
XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);

/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}

/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {

Error = 1;

/* Reset could fail and hang
* NEED a way to handle this or do not call it??
*/
XAxiDma_Reset(AxiDmaInst);

TimeOut = RESET_TIMEOUT_COUNTER;

while (TimeOut) {
if(XAxiDma_ResetIsDone(AxiDmaInst)) {
break;
}

TimeOut -= 1;
}

return;
}

/*
* If completion interrupt is asserted, then set RxDone flag
*/
if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {

RxDone = 1;
}
}

intrHandler

DMA啟動傳輸部分如下,調(diào)用庫函數(shù)XAxiDma_SimpleTransfer。以第一個為例,是將RxBufferPtr為數(shù)據(jù)首地址,MAX_PKT_LEN為字節(jié)數(shù),XAXIDMA_DEVICE_TO_DMA為傳輸方向啟動DMA傳輸數(shù)據(jù)。MAX_PKT_LEN不能超過之前IP核配置參數(shù)指定的16384byte,XAXIDMA_DEVICE_TO_DMA和XAXIDMA_DMA_TO_DEVICE依次指PL-> DMA ->PS以及PS->DMA -> PL方向,也就是PL就是其中的DEVICE。DMA啟動函數(shù)只有一個地址,這是與PS端DMA最大的區(qū)別,因為數(shù)據(jù)搬移的另一側(cè)是帶有無地址的流接口的IP核,該側(cè)“地址”由硬件連接決定。

o4YBAF9uKJGAUdpcAACVWDBNQ6s335.png

再來看看搬移數(shù)據(jù)內(nèi)存首地址RxBufferPtr和TxBufferPtr.從下邊的定義可見MEM_BASE_ADDR是DDR_BASE_ADDR加上一段偏移量的結(jié)果,DDR基地址數(shù)值從xparameters.h中查看。

o4YBAF9uKJOACK2QAACyTdi29gs886.jpg

四、函數(shù)重用封裝

官方的代碼比較亂,都寫在main函數(shù)里,米聯(lián)客教程init_intr_sys()函數(shù)完成整個中斷系統(tǒng)的建立,將官方demo中main函數(shù)DMA測試之前關(guān)于中斷部分的代碼全部封裝其中,包括DMA中斷初始化,中斷控制器初始化,使能中斷異常,連接DMA發(fā)送與接收中斷,DMA中斷使能五個過程。

o4YBAF9uKJSAIm49AABrFCoVo1Q716.png

五、AXI總線信號ILA波形分析

AXI Stream主要接口:

tdata:數(shù)據(jù)tkeep:字節(jié)有效指示tlast:幀尾指示tready:準(zhǔn)備就緒tvalid:數(shù)據(jù)有效指示

MM2S方向一旦tvalid拉高則觸發(fā)ILA抓取信號波形。一幀數(shù)據(jù)有64個,每個數(shù)據(jù)32bit(4byte),一共正好為C代碼中MAX_PKT_LEN數(shù)值,即256byte。

其中他keep信號比較關(guān)鍵。如當(dāng)stream位寬為16bit,傳輸數(shù)據(jù)量為255byte時,tkeep信號在最后一個stream數(shù)據(jù)對應(yīng)位置是2'b01指示第128個16bit數(shù)中最后一個數(shù)的高字節(jié)為upsize過程中無效填充數(shù)據(jù)。

后續(xù)本人會利用System Generator設(shè)計算法IP,之后集成到IP Integerator中作為CPU外設(shè)進(jìn)行板級驗證。繼續(xù)學(xué)習(xí)!

編輯:hfy


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 寄存器
    +關(guān)注

    關(guān)注

    31

    文章

    5295

    瀏覽量

    119823
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    10806

    瀏覽量

    210850
  • 數(shù)據(jù)傳輸
    +關(guān)注

    關(guān)注

    9

    文章

    1794

    瀏覽量

    64412
  • Zynq
    +關(guān)注

    關(guān)注

    9

    文章

    607

    瀏覽量

    47101
  • AXI
    AXI
    +關(guān)注

    關(guān)注

    1

    文章

    127

    瀏覽量

    16576
收藏 人收藏

    評論

    相關(guān)推薦

    Xilinx ZYNQ 7000系列SoC的功能特性

    本文介紹下Xilinx ZYNQ 7000系列SoC的功能特性、資源特性、封裝兼容性以及如何訂購器件。
    的頭像 發(fā)表于 10-24 15:04 ?225次閱讀
    Xilinx <b class='flag-5'>ZYNQ</b> 7000系列<b class='flag-5'>SoC</b>的功能特性

    環(huán)路測試的接線方法及原因

    環(huán)路測試是一種用于評估電子系統(tǒng)(如開關(guān)電源)穩(wěn)定性和性能的重要測試方法。在環(huán)路測試中,正確的接線方法是確保
    的頭像 發(fā)表于 10-06 16:49 ?313次閱讀
    <b class='flag-5'>環(huán)路</b><b class='flag-5'>測試</b>的接線方法及原因

    如何測試高精度的環(huán)路性能

    電子發(fā)燒友網(wǎng)站提供《如何測試高精度的環(huán)路性能 .pdf》資料免費下載
    發(fā)表于 09-27 11:09 ?0次下載
    如何<b class='flag-5'>測試</b>高精度的<b class='flag-5'>環(huán)路</b>性能

    環(huán)路測試儀的工作原理是什么

    環(huán)路測試儀是一種用于測試和驗證通信網(wǎng)絡(luò)性能的設(shè)備,它能夠模擬網(wǎng)絡(luò)中的各種條件,以確保網(wǎng)絡(luò)設(shè)備和系統(tǒng)在實際運行中能夠達(dá)到預(yù)期的性能標(biāo)準(zhǔn)。環(huán)路測試
    的頭像 發(fā)表于 09-12 14:37 ?320次閱讀

    環(huán)路測試方法有哪幾種

    環(huán)路測試(Loop Testing)是一種軟件測試方法,它通過在軟件內(nèi)部創(chuàng)建循環(huán)來驗證程序的循環(huán)結(jié)構(gòu)是否正確。這種方法特別適用于測試循環(huán)控制結(jié)構(gòu),如for循環(huán)、while循環(huán)、do-w
    的頭像 發(fā)表于 09-12 14:35 ?378次閱讀

    SoC設(shè)計中總線協(xié)議AXI4與AXI3的主要區(qū)別詳解

    AXI4和AXI3是高級擴(kuò)展接口(Advanced eXtensible Interface)的兩個不同版本,它們都是用于SoC(System on Chip)設(shè)計中的總線協(xié)議,用于處理器和其它外設(shè)之間的高速數(shù)據(jù)傳輸。
    的頭像 發(fā)表于 05-10 11:29 ?5815次閱讀
    <b class='flag-5'>SoC</b>設(shè)計中總線協(xié)議<b class='flag-5'>AXI</b>4與<b class='flag-5'>AXI</b>3的主要區(qū)別詳解

    沒用過zynq今天在看解析是發(fā)現(xiàn)汽車的CID上有用這個,不知道zynq有什么優(yōu)勢?

    沒用過zynq今天在看解析是發(fā)現(xiàn)汽車的CID上有用這個,不知道zynq有什么優(yōu)勢?
    發(fā)表于 04-23 15:01

    STM32H7使用DMA方式讀取SD卡,DMA緩沖是否只能處于AXI SRAM?

    除了512K的 AXI SRAM,還有沒有其他的SRAM 區(qū)域能訪問到? 因為我想這整個512K 的AXI SRAM 做其他用途,變量都定義到其它的SRAM 區(qū)域。但這樣SD卡 DMA 就不能用了。
    發(fā)表于 04-18 06:00

    Xilinx高性能PCIe DMA控制器IP,8個DMA通道

    Scather Gather DMA,提供FIFO/AXI4-Stream用戶接口。 基于PCI Express Integrated Block,Multi-Channel PCIe RDMA
    的頭像 發(fā)表于 02-22 11:11 ?1311次閱讀
    Xilinx高性能PCIe <b class='flag-5'>DMA</b>控制器IP,8個<b class='flag-5'>DMA</b>通道

    PCIe-AXI-Cont用戶手冊

    Transaction layer的所有功能特性,不僅內(nèi)置DMA控制器,而且具備AXI4用戶接口,提供一個高性能,易于使用,可定制化的PCIe-AXI互連解決方案,同時適用于ASIC和FPGA。
    發(fā)表于 02-22 09:15 ?3次下載

    基于Zynq FPGA對雷龍SD NAND的測試

    文章目錄一、SDNAND特征1.1SD卡簡介1.2SD卡Block圖二、SD卡樣片三、Zynq測試平臺搭建3.1測試流程3.2SOC搭建四、軟件搭建五、
    的頭像 發(fā)表于 12-22 17:45 ?499次閱讀
    基于<b class='flag-5'>Zynq</b> FPGA對雷龍SD NAND的<b class='flag-5'>測試</b>

    環(huán)路電阻怎么測試好壞

    測試環(huán)路電阻的好壞是電力系統(tǒng)運行和設(shè)備安全的重要環(huán)節(jié)。環(huán)路電阻測試是通過測量電路的絕緣電阻來確定電路的質(zhì)量。環(huán)路電阻
    的頭像 發(fā)表于 12-20 13:59 ?2060次閱讀

    使用 PCIE 更新 AMD ZYNQ? 的 QSPI Flash 參考設(shè)計

    /r/en-US/ug585-zynq-7000-SoC-TRM 環(huán)境需求 硬件環(huán)境: ZC706 開發(fā)板 Windows10/11 或者 Ubuntu20.04 主機(jī) 軟件環(huán)境: Vivado
    發(fā)表于 11-30 18:49

    XILINX FPGA IP之AXI Traffic Generator

    AXI Traffic Generator IP 用于在AXI4和AXI4-Stream互連以及其他AXI4系統(tǒng)外設(shè)上生成特定序列(流量)。它根據(jù)IP的編程和選擇的操作模式生成各種類型
    的頭像 發(fā)表于 11-23 16:03 ?2273次閱讀
    XILINX FPGA IP之<b class='flag-5'>AXI</b> Traffic Generator

    使用PCIE更新AMD ZYNQ的QSPI Flash參考設(shè)計

    AMD ZYNQ 7000 的 S_AXI 端口提供了外設(shè)訪問 PS 內(nèi)部外設(shè)控制器的接口,這其中包括 4 個 S_AXI_HP 端口以及兩個 S_AXI_GP 端口。一般來說,可以訪
    的頭像 發(fā)表于 11-17 10:02 ?1144次閱讀
    使用PCIE更新AMD <b class='flag-5'>ZYNQ</b>的QSPI Flash參考設(shè)計