0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

衍射光學(xué)神經(jīng)網(wǎng)絡(luò)可以滿足巨大的數(shù)據(jù)需求

led13535084363 ? 來源:光行天下 ? 2023-02-20 14:03 ? 次閱讀

新研究發(fā)現(xiàn),一種使用光子而不是電子模擬大腦的神經(jīng)網(wǎng)絡(luò),可以通過使用數(shù)千種波長的光同時運行許多計算,快速分析大量數(shù)據(jù)。

人工神經(jīng)網(wǎng)絡(luò)在分析醫(yī)學(xué)掃描和支持自動駕駛汽車等應(yīng)用中的應(yīng)用越來越廣泛。在這些人工智能系統(tǒng)中,組件(也稱為神經(jīng)元)被輸入數(shù)據(jù)并合作解決問題,例如識別人臉。如果神經(jīng)網(wǎng)絡(luò)具有多層神經(jīng)元,則稱其為“深層”。

隨著神經(jīng)網(wǎng)絡(luò)的規(guī)模和功率的增長,當(dāng)在傳統(tǒng)電子設(shè)備上運行時,它們越來越需要能量。這就是為什么一些科學(xué)家一直在研究光學(xué)計算作為一種有前途的下一代人工智能媒介。這種方法使用光而不是電來執(zhí)行計算,比電子計算方法更快,功耗更低。

例如,衍射光學(xué)神經(jīng)網(wǎng)絡(luò)由一堆層組成,每個層都有數(shù)千個像素,可以衍射或散射光。這些衍射特征充當(dāng)神經(jīng)網(wǎng)絡(luò)中的神經(jīng)元。深度學(xué)習(xí)用于設(shè)計每一層,因此當(dāng)以光的形式的輸入照射到堆棧上時,輸出光對來自圖像分類或圖像重建等復(fù)雜任務(wù)的數(shù)據(jù)進行編碼。這項研究的資深作者、加州大學(xué)洛杉磯分校的光學(xué)工程師Aydogan Ozcan表示,所有這些計算“除了照明光之外,不消耗電力”。

這種衍射網(wǎng)絡(luò)可以以光速分析大量數(shù)據(jù),以執(zhí)行諸如識別物體的任務(wù)。例如,它們可以幫助自動駕駛車輛立即識別行人或交通標(biāo)志,或者幫助醫(yī)療診斷系統(tǒng)快速識別疾病證據(jù)。傳統(tǒng)的電子設(shè)備需要首先對這些物體進行成像,然后將這些信號轉(zhuǎn)換成數(shù)據(jù),最后運行程序來確定這些物體是什么。相比之下,衍射網(wǎng)絡(luò)只需要接收從那些能夠識別物體的物體反射或以其他方式到達的光,因為來自該物體的光大部分被衍射到分配給該類物體的單個像素。

此前,Ozcan和他的同事使用一系列使用3D打印制造的64平方厘米薄聚合物晶片設(shè)計了單色衍射網(wǎng)絡(luò)。當(dāng)用單個波長或顏色的光照射時,該衍射網(wǎng)絡(luò)可以實現(xiàn)單個矩陣乘法運算。這些計算涉及到將被稱為矩陣的數(shù)字網(wǎng)格相乘,是許多計算任務(wù)的關(guān)鍵,包括操作神經(jīng)網(wǎng)絡(luò)。

現(xiàn)在,研究人員開發(fā)了一種寬帶衍射光學(xué)處理器,它可以同時接受多個輸入波長的光,進行多達數(shù)千次“以光速同時執(zhí)行”的矩陣乘法運算。

在這項新的研究中,科學(xué)家們3D打印了三個衍射層,每個衍射層具有14400個衍射特征。他們的實驗表明,衍射網(wǎng)絡(luò)可以使用兩個亞毫米波長的太赫茲頻率信道成功運行。他們的計算機模型表明,這些衍射網(wǎng)絡(luò)可以同時接受大約2000個波長信道。

Ozcan說:“我們通過采用波長復(fù)用的方案,證明了大規(guī)模并行光學(xué)計算的可行性”。

科學(xué)家們指出,使用可見光和太赫茲以外的其他頻率的光構(gòu)建衍射網(wǎng)絡(luò)應(yīng)該是可能的。這種光學(xué)神經(jīng)網(wǎng)絡(luò)也可以由多種材料和技術(shù)制造。

總之,它們可能會在各個領(lǐng)域找到應(yīng)用,例如生物醫(yī)學(xué)成像、遙感、分析化學(xué)和材料科學(xué)。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4749

    瀏覽量

    100433
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    46691

    瀏覽量

    237179
  • 3D打印
    +關(guān)注

    關(guān)注

    26

    文章

    3536

    瀏覽量

    108763

原文標(biāo)題:衍射光學(xué)神經(jīng)網(wǎng)絡(luò)可以滿足巨大的數(shù)據(jù)需求

文章出處:【微信號:光行天下,微信公眾號:光行天下】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    神經(jīng)網(wǎng)絡(luò)辨識模型具有什么特點

    神經(jīng)網(wǎng)絡(luò)辨識模型是一種基于人工神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識方法,它具有以下特點: 非線性映射能力 :神經(jīng)網(wǎng)絡(luò)能夠處理非線性問題,可以很好地擬合復(fù)雜的非線性系統(tǒng)。 泛化能力 :
    的頭像 發(fā)表于 07-11 11:12 ?372次閱讀

    什么是神經(jīng)網(wǎng)絡(luò)加速器?它有哪些特點?

    )和圖形處理器(GPU)雖然可以處理神經(jīng)網(wǎng)絡(luò)計算,但在能效比和計算密度上往往難以滿足特定應(yīng)用場景的需求。因此,神經(jīng)網(wǎng)絡(luò)加速器應(yīng)運而生,它通過
    的頭像 發(fā)表于 07-11 10:40 ?399次閱讀

    20個數(shù)據(jù)可以訓(xùn)練神經(jīng)網(wǎng)絡(luò)

    當(dāng)然可以,20個數(shù)據(jù)點對于訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)來說可能非常有限,但這并不意味著它們不能用于訓(xùn)練。實際上,神經(jīng)網(wǎng)絡(luò)可以訓(xùn)練在非常小的
    的頭像 發(fā)表于 07-11 10:29 ?561次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?737次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列
    的頭像 發(fā)表于 07-05 09:52 ?469次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)一樣嗎

    遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,RvNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)是兩種不同類型的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它們在處理序列
    的頭像 發(fā)表于 07-05 09:28 ?634次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    。 遞歸神經(jīng)網(wǎng)絡(luò)的概念 遞歸神經(jīng)網(wǎng)絡(luò)是一種具有短期記憶功能的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù),如時間序列、文本、語音等。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)不同
    的頭像 發(fā)表于 07-04 14:54 ?600次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    結(jié)構(gòu)。它們在處理不同類型的數(shù)據(jù)和解決不同問題時具有各自的優(yōu)勢和特點。本文將從多個方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有循環(huán)連接的
    的頭像 發(fā)表于 07-04 14:24 ?1026次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?587次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?611次閱讀

    如何使用神經(jīng)網(wǎng)絡(luò)進行建模和預(yù)測

    輸入信號,對其進行加權(quán)求和,然后通過激活函數(shù)進行非線性轉(zhuǎn)換,生成輸出信號。通過這種方式,神經(jīng)網(wǎng)絡(luò)可以學(xué)習(xí)輸入數(shù)據(jù)的復(fù)雜模式和關(guān)系。 神經(jīng)網(wǎng)絡(luò)的類型
    的頭像 發(fā)表于 07-03 10:23 ?632次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    Network)有相似之處,但它們之間還是存在一些關(guān)鍵的區(qū)別。 一、引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)的計算模型,它由大量的神經(jīng)元(或稱為節(jié)點)組成,這些神經(jīng)元通過權(quán)重連接在一起
    的頭像 發(fā)表于 07-03 10:14 ?609次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?900次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?2465次閱讀

    詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進人們的視線
    的頭像 發(fā)表于 01-11 10:51 ?1852次閱讀
    詳解深度學(xué)習(xí)、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用