紅外成像技術(shù)有廣泛應(yīng)用,現(xiàn)有的紅外成像芯片主要采用外延生長方法制備的塊體半導(dǎo)體材料,通過倒裝鍵合工藝實現(xiàn)與硅基讀出電路互聯(lián),其價格高昂、工藝復(fù)雜,嚴(yán)重制約了成像規(guī)模和分辨率的提升。膠體量子點材料可以通過溶液法大規(guī)模低成本合成,并且無需銦柱沉積及鍵合綁定實現(xiàn)與讀出電路的直接耦合,為低成本、高性能成像芯片的研發(fā)提供了全新的思路。與光導(dǎo)型量子點紅外探測器相比,光伏型探測器在內(nèi)建電場的作用下能夠顯著降低器件噪聲,提高探測靈敏度。然而,不可控、不均勻的摻雜方法使得目前量子點紅外焦平面陣列仍主要以光導(dǎo)型模式工作。
近日,北京理工大學(xué)光電學(xué)院郝群教授、唐鑫教授團(tuán)隊創(chuàng)新提出了一種可控的電場激活原位摻雜方法,并研究了不同離子對摻雜濃度的作用機(jī)制,實現(xiàn)了光導(dǎo)型向平面光伏型量子點紅外成像芯片的變革。通過改變電場極性和激活時間,摻雜極性空間可調(diào),完成的像素規(guī)模為640×512、截止波段為2.5微米的短波紅外成像芯片實現(xiàn)了具有平面p-n結(jié)的光伏型工作模式,與光導(dǎo)型工作模式相比,平面光伏型器件比探測率提高了一個數(shù)量級。
電場激活原位摻雜的平面光伏型膠體量子點紅外成像芯片的工作原理如圖1所示。通過離子溶液處理和恒定電場激活,器件的工作模式由光導(dǎo)型變成了光伏型。場效應(yīng)晶體管(FET)測試可知,通過簡單地改變電場激活時間和電場極性,量子點的摻雜極性可以得到很好的調(diào)控。正向電場激發(fā)n型摻雜,反向電場激發(fā)p型摻雜,使得器件恰好工作在反向偏壓區(qū)間。通過電場激活原位摻雜過程,器件的電流-電壓曲線表現(xiàn)了明顯的整流特性,并且在零偏壓下表現(xiàn)出了顯著的光電流,證明了器件內(nèi)部形成了強(qiáng)烈的內(nèi)建電場。
圖1.電場激活原位摻雜平面光伏型膠體量子點紅外成像芯片工作原理:(a)工作原理示意圖。(b)碲化汞膠體量子點吸收光譜。(c、d)FET測量過程示意圖。(e)碲化汞膠體量子點的高分辨率透射電子顯微鏡圖像和薄膜的FET曲線。(f)正向電場和(g)反向電場激活下碲化汞膠體量子點薄膜的FET曲線。(h)電場激活原位摻雜過程后的器件電流-電壓曲線。 團(tuán)隊研究了不同離子對摻雜濃度的作用機(jī)制,如圖2所示。研究發(fā)現(xiàn),器件經(jīng)過CdCl2溶液處理后與經(jīng)過CuCl2、H2O、NaCl和FeCl3溶液處理相比表現(xiàn)出了最優(yōu)的整流特性,其整流比是其他溶液處理后的十倍。
隨著電場激活時間的增加,器件在零偏壓下的光電流逐漸增加達(dá)到峰值后降低。器件經(jīng)過CdCl2溶液處理后的零偏壓下的光電流是其他溶液處理后的四倍。此外,器件經(jīng)過CdCl2溶液處理后零偏壓下的光電流達(dá)到峰值所需要的電場激活時間最短。
因此,器件經(jīng)過CdCl2溶液處理,電場激活15分鐘,器件具有最強(qiáng)的內(nèi)建電場。與未進(jìn)行電場激活摻雜的光導(dǎo)型器件相比,電場激活原位摻雜平面光伏型器件比探測率提高了一個數(shù)量級,超過1011Jones。此外,器件的響應(yīng)速度從未電場激活摻雜的25毫秒提升到了184微秒。
圖2.電場激活原位摻雜平面光伏型膠體量子點單點探測器:(a)性能表征過程示意圖。(b)電場激活原位摻雜平面光伏型器件在背景和不同紅外功率下的電流-電壓曲線。(c)器件經(jīng)過不同溶液處理后的整流比-電壓曲線。(d)器件經(jīng)過不同溶液處理后的零偏壓下的光電流-電場激活時間曲線。(e)器件經(jīng)過電場激活原位摻雜前后的比探測率-電壓曲線。(f)器件經(jīng)過電場激活原位摻雜前后的響應(yīng)速度。(g)器件光譜響應(yīng)測量示意圖。(h)器件的光譜響應(yīng)曲線。
具有橫向p-n結(jié)的膠體量子點紅外探測器成功地與CMOS ROIC單片集成,實現(xiàn)了像素規(guī)模為640×512、像元間距為15微米的平面光伏型膠體量子點短波紅外成像芯片的制備,如圖3所示。薄膜的均方根(RMS)粗糙度僅為5納米,證明了量子點薄膜沉積的均勻性。截止波長為2.5微米的平面光伏型膠體量子點短波紅外成像芯片具有優(yōu)異的性能,與光導(dǎo)型成像芯片相比,死像元和過熱像元數(shù)顯著減少,器件噪聲減少了一個數(shù)量級。
圖3.平面光伏型膠體量子點短波紅外成像芯片:(a)紅外成像芯片電極的光學(xué)顯微圖像。平面光伏型膠體量子點短波紅外成像芯片的(b)原子力顯微鏡圖像和(c)直方圖。(d)平面光伏型膠體量子點短波紅外成像芯片的響應(yīng)度直方圖。電場激活原位摻雜前后的成像芯片的(e、f)過熱像元和死像元及(g)噪聲直方圖。平面光伏型膠體量子點短波紅外成像芯片的(h)比探測率直方圖和(i)平均比探測率-電場激活時間曲線。 最后,團(tuán)隊還展示了平面光伏型膠體量子點成像芯片的高質(zhì)量短波紅外成像效果,如圖4所示。如在可見光下難以觀察到的硅片、化學(xué)成分等,通過短波紅外成像芯片得以清晰展示,證明了其在半導(dǎo)體檢測、食品檢測、化學(xué)分析等方面的應(yīng)用,展示了廣泛的應(yīng)用潛力。
圖4.短波紅外成像:(a)成像過程示意圖。(b)曼妥思糖盒和糖盒前面的硅片、(c)表面有 “BITQTL”字樣的蘋果和丁腈手套內(nèi)的蘋果、(d)鹽、鹽和糖的混合物及糖的可見光和短波紅外成像圖。
綜上所述,北京理工大學(xué)研究團(tuán)隊開發(fā)了一種可控的電場激活原位摻雜方法,研究了不同離子對摻雜濃度的作用機(jī)制,在光導(dǎo)型膠體量子點紅外探測器內(nèi)構(gòu)建了橫向p-n結(jié),實現(xiàn)了相比于未電場激活摻雜前性能顯著提高的平面光伏型膠體量子點短波紅外成像芯片制備,展示了在半導(dǎo)體檢測、食品檢測、化學(xué)分析等方面的應(yīng)用潛力。該工作得到了中芯熱成在焦平面探測器制備和焦平面成像系統(tǒng)測試方面的大力支持。
審核編輯:劉清
-
FET
+關(guān)注
關(guān)注
3文章
627瀏覽量
62837 -
場效應(yīng)晶體管
+關(guān)注
關(guān)注
6文章
358瀏覽量
19455 -
紅外探測器
+關(guān)注
關(guān)注
5文章
287瀏覽量
18027 -
紅外成像
+關(guān)注
關(guān)注
0文章
90瀏覽量
11281 -
CMOS技術(shù)
+關(guān)注
關(guān)注
0文章
65瀏覽量
10219
發(fā)布評論請先 登錄
相關(guān)推薦
評論