近年來,我國年工業(yè)生產(chǎn)總值不斷提高,但能耗比卻居高不下,高能耗比已成為制約我國經(jīng)濟發(fā)展的瓶頸,為此國家投入大量資金支持節(jié)能降耗項目,變頻調(diào)速技術(shù)已越來越廣泛的應(yīng)用在各行各業(yè),它不僅可以改善工藝,延長設(shè)備使用壽命,提高工作效率等,最重要的是它可以“節(jié)能降耗”,這一點已被廣大用戶所認可,且深受關(guān)注。預(yù)計未來幾年,具有高效節(jié)能功效的變頻器市場將受政策驅(qū)動持續(xù)增長。
自推出以來,絕緣柵雙極晶體管(IGBT)由于其高電壓、大電流、低損耗等優(yōu)勢特點,被廣泛應(yīng)用于馬達驅(qū)動,光伏,UPS,儲能,汽車 等領(lǐng)域。隨著全球?qū)稍偕茉吹娜找骊P(guān)注以及對效率的需求,高效率,高可靠性成為功率電子產(chǎn)業(yè)不斷前行的關(guān)鍵。Nexperia(安世半導(dǎo)體)的 IGBT 產(chǎn)品系列優(yōu)化了開關(guān)損耗和導(dǎo)通損耗, 兼顧馬達驅(qū)動需求的高溫短路耐受能力,實現(xiàn)更高的電流密度和系統(tǒng)可靠性。
變頻器
變頻器由于“節(jié)能降耗”等優(yōu)勢,廣泛的使用在電機驅(qū)動的各個領(lǐng)域。讓我們先來走進變頻器,看看變頻器的典型電路。
“交—直—交”電路是典型的變頻器拓撲電路,基于該拓撲結(jié)構(gòu)的變頻器主要由整流(交流變直流)、濾波、逆變(直流變交流)、制動單元、驅(qū)動單元、檢測單元、微處理單元等組成。變頻器靠 IGBT 的開關(guān)來調(diào)整輸出電源的電壓和頻率,根據(jù)電機的實際需要,來提供其所需要的電源電壓,進而達到節(jié)能、調(diào)速的目的。另外,變頻器還有很多的保護功能,如過流、過壓、過載保護等等。隨著工業(yè)自動化程度的不斷提高,變頻器廣泛的應(yīng)用在紡織,港口,化工,石油,工程機械,物流等各類應(yīng)用場景。
△圖1 典型的馬達驅(qū)動變頻器的應(yīng)用框圖
變頻節(jié)能
傳統(tǒng)用工頻(50Hz)電源直接驅(qū)動時的風量或水量調(diào)節(jié)方式落后。風機、泵類調(diào)節(jié)大部分仍采用閥門機械節(jié)流方式(調(diào)節(jié)入口或出口的擋板、閥門開度等降低風量或水量)。由于電機以恒定速度運行,因此即使降低風量和水量,耗電量也幾乎不會下降,且大量的能源消耗在擋板、閥門的截流過程中。容易產(chǎn)生能源的浪費。
風機、泵類當使用變頻調(diào)速時,如果流量要求減小,通過降低泵或風機的轉(zhuǎn)速即可滿足要求。隨著轉(zhuǎn)速的降低,所需轉(zhuǎn)矩以平方的比例下降。輸出的功率也就成立方關(guān)系下降。即可以實現(xiàn)大規(guī)模的降低輸出功率,降低耗電量。
風扇、風機、泵為代表的降轉(zhuǎn)矩負載來說,隨著轉(zhuǎn)速的降低,所需轉(zhuǎn)矩以平方的比例下降。而根據(jù)流體力學,功率=壓力×流量,流量和轉(zhuǎn)速的一次方是成正比的,壓力與轉(zhuǎn)速的平方是成正比的,功率和轉(zhuǎn)速的立方成正比,如果說水泵效率固定的話,當調(diào)節(jié)流量下降時,轉(zhuǎn)速就會成比例下降,輸出的功率也就成立方關(guān)系下降,所以說,水泵的轉(zhuǎn)速與電機耗電功率是近似立方比關(guān)系。
馬達驅(qū)動的短路能力
工業(yè)環(huán)境中的短路工業(yè)電機驅(qū)動器的工作環(huán)境相對惡劣,可能出現(xiàn)高溫、交流線路瞬變、機械過載、接線錯誤以及其它突發(fā)情況。其中有些事件可能會導(dǎo)致較大的電流流入電機驅(qū)動器的功率電路中。
△圖2 IGBT 典型的短路情況
圖2顯示了三種典型的短路事件。它們是:
1. 逆變器直通。這可能是由于不正確開啟其中一條逆變器橋臂的兩個IGBT所導(dǎo)致的,而這種情況有可能是因為遭受了電磁干擾或控制器故障,也可能是因為臂上的其中一個 IGBT 故障導(dǎo)致的。
2. 相對相短路。這可能是因為性能下降、溫度過高或過壓事件 導(dǎo)致電機繞組之間發(fā)生絕緣擊穿所引起的。
3. 相線對地短路。這同樣可能是因為性能下降、溫度過高或過壓事件導(dǎo)致電機繞組和電機外殼之間發(fā)生絕緣擊穿所引起的。
一般而言,電機可在相對較長的時間內(nèi)(如毫秒到秒,具體取決于 電機尺寸和類型)吸收極高的電流,這對于應(yīng)用在馬達驅(qū)動上的 IGBT 提出了高溫短路耐受能力的要求。
IGBT 在極限工況需要滿足短路耐受的能力,Nexperia 的IGBT模塊可實現(xiàn)高溫150°C 10us 的短路能力。如圖3 IGBT 開關(guān)損耗、通態(tài)壓降和可靠性的三者的折中關(guān)系。Nexperia 的 IGBT 采用溝槽柵場終止技術(shù),針對馬達驅(qū)動的應(yīng)用優(yōu)化了 Vcesat導(dǎo)通損耗和開關(guān)損耗的性能,同時滿足高溫150°C 10us 的短路能力。
△圖3 IGBT 開關(guān)損耗、通態(tài)壓降和可靠性的三者關(guān)系
IGBT模塊的靜態(tài)特性和動態(tài)性能對比
導(dǎo)通損耗是整體損耗的重要組成部分,我們選取了在市場上廣泛應(yīng)用的不同廠商ABCD產(chǎn)品作為對照,在同樣的條件如高溫150°C,VGE=15V 時,從圖4的對比,我們可以讀出在額定電流100A條件下,競品A,B,C,D的 Vcesat的飽和壓降分別為2.49V, 2.41V, 2.52V, 3V。紅色的是安世 IGBT 產(chǎn)品NP100T12P2T3的飽和壓降,Vcesat僅為2.27V,在高溫下,和競品ABCD相比,Vcesat分別降低了10%,6%,11%,32%。極大的降低 IGBT 的靜態(tài)損耗。Nexperia 的 IGBT模塊表現(xiàn)出了優(yōu)異的低 Vcesat飽和壓降的特性。
△圖4 IGBT模塊在150°C 的 靜態(tài)特性(Ic-Vcesat)
IGBT模塊的動態(tài)性能對比
同樣馬達驅(qū)動的應(yīng)用中對開關(guān)損耗尤為關(guān)注,我們選取了在市場上廣泛應(yīng)用的不同廠商 ABCD 產(chǎn)品作為對照,對比Nexperia IGBT 產(chǎn)品 NP100T12P2T3 在不同電流下的開通損耗和關(guān)斷損耗的和值 Etot( Eon+Eoff),如圖 5所示在結(jié)溫150°C 的對比,紅色的曲線是安世 IGBT 產(chǎn)品 NP100T12P2T3,在額定電流100A的條件下,競品 A,B,C,D,開關(guān)損耗和值 Etot分別為25.84mJ,24.52mJ,24.33mJ,29.19mJ,而Nexperia產(chǎn)品的開關(guān)損耗和值 Etot僅為23.64mJ。在高溫下,和競品ABCD相比,開關(guān)損耗和值 Etot分別降低了9%,4%,3%,23%,極大地降低 IGBT 在高開關(guān)頻率下的功率損耗。
△圖5 IGBT模塊在150°C 的 開關(guān)特性(Eon+Eoff)
IGBT的折中曲線
圖6是在常溫25°C 和高溫150°C 時的開關(guān)損耗Etot和導(dǎo)通壓降 Vcesat的折中關(guān)系對比。IGBT工作在大電流高電壓,高溫150°C的折中曲線備受客戶的關(guān)注。如圖6所示,橫坐標代表的是導(dǎo)通壓降 Vcesat,縱坐標代表的是開關(guān)損耗 Etot越接近原點,意外著損耗越低,可以看出,Nexperia IGBT產(chǎn)品的開關(guān)損耗和飽和壓降都明顯小于競品 ABCD 。
△圖6 IGBT模塊在25°C 和150°C 的折中曲線(Vcesat-Etot)
馬達驅(qū)動的損耗計算
為了更接近客戶的實際的應(yīng)用情況,如圖7是IGBT模塊在典型的馬達驅(qū)動的損耗對比,其中 Vcesat, VF的數(shù)據(jù)來源于同一測試平臺下的實測數(shù)據(jù),開關(guān)損耗 Eon+Eoff是基于同一雙脈沖測試平臺在高溫150°C 額定電流 100A 的條件下的測試數(shù)據(jù),仿真模擬的是工業(yè)馬達連續(xù)運行的工況,系統(tǒng)工作于母線電壓Vdc=600V,有效值電流 Irms=50A ,門級電阻Rgate=1.5?, 載波頻率 fsw=10KHz,調(diào)制比 m=0.8, 電機功率因數(shù) cosφ=0.8, 輸出頻率fout=50Hz。
仿真損耗的計算結(jié)果如下,在典型變頻器驅(qū)動器應(yīng)用條件下,Nexperia NP100T12P2T3 的 IGBT 產(chǎn)品, 其開關(guān)損耗和導(dǎo)通損耗均小于競品 ABCD ,總功率損耗降低5%~24%。Nexperia 的 IGBT 產(chǎn)品整體降低了功率損耗,提升了變頻器的系統(tǒng)效率。
△圖7 IGBT 模塊在典型的馬達驅(qū)動應(yīng)用條件的 Ploss 損耗
熱仿真
從熱仿真上可以直觀的看到節(jié)溫的分布,如圖8所示。對比安世半導(dǎo)體和競品 A 馬達驅(qū)動應(yīng)用做熱仿真,Nexperia 的 IGBT 最高節(jié)溫 Tjmax會是116°C, 競品的最高節(jié)溫 Tjmax是119°C,比競品 A 低3°C。
△圖8 馬達驅(qū)動應(yīng)用中熱仿真
布局設(shè)計
產(chǎn)品的布局設(shè)計也非常關(guān)鍵,通過精巧的布局設(shè)計與仿真對比,增加布線寬度,減小換流路徑長度,增加換流路徑重合度及磁場相消,來達到最大程度的降低寄生電感的目的。找元器件現(xiàn)貨上唯樣商城
在 IGBT 關(guān)斷的過程中,IGBT 的電流下降產(chǎn)生較大的di/dt, 由于回路中存在雜散電感,在IGBT 的上疊加反向電動勢,deltaV=L*di/dt。 產(chǎn)生較大的電壓尖峰,由于優(yōu)化了線路中的雜散電感,從而最終使得關(guān)斷時的電壓尖峰盡可能小。減少關(guān)斷時候時的電壓過沖。
審核編輯 黃宇
-
變頻器
+關(guān)注
關(guān)注
251文章
6468瀏覽量
144007 -
IGBT
+關(guān)注
關(guān)注
1263文章
3746瀏覽量
248030 -
熱仿真
+關(guān)注
關(guān)注
0文章
20瀏覽量
7188 -
馬達驅(qū)動
+關(guān)注
關(guān)注
2文章
114瀏覽量
20055
發(fā)布評論請先 登錄
相關(guān)推薦
評論