0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

DeepMind推出的AlphaFold可以僅根據(jù)基因「代碼」預(yù)測生成蛋白質(zhì)的3D形狀

KIyT_gh_211d74f ? 來源:lq ? 2018-12-05 15:51 ? 次閱讀

Alphabet(谷歌)旗下公司DeepMind的人工智能AlphaGo曾在國際象棋、圍棋等項(xiàng)目中取得了超越人類的表現(xiàn),其研究不僅震驚世界,也兩次登上 Nature。如今,該公司已將人工智能技術(shù)應(yīng)用到最具挑戰(zhàn)性的科學(xué)研究問題中,其剛剛推出的 AlphaFold 可以僅根據(jù)基因「代碼」預(yù)測生成蛋白質(zhì)的 3D 形狀。

DeepMind 表示,AlphaFold 是「該公司首個(gè)證明人工智能研究可以驅(qū)動(dòng)和加速科學(xué)新發(fā)現(xiàn)的重要里程碑」??磥?,人類醫(yī)學(xué)研究要前進(jìn)一步了。

2017 年 5 月,谷歌 DeepMind 人工智能項(xiàng)目 AlphaGo(執(zhí)棋者:黃士杰博士)對戰(zhàn)當(dāng)時(shí)世界第一的圍棋選手柯潔。

周日,在墨西哥坎昆舉辦的一場國際會(huì)議中,DeepMind 的最新 AI——AlphaFold 在一項(xiàng)極其困難的任務(wù)中擊敗了所有對手,成功地根據(jù)基因序列預(yù)測出蛋白質(zhì)的 3D 形狀。

「蛋白質(zhì)折疊」是一種令人難以置信的分子折疊形式,科學(xué)界以外很少有人討論,但卻是一個(gè)非常重要的問題。生物由蛋白質(zhì)構(gòu)成,生物體功能由蛋白質(zhì)形狀決定。理解蛋白質(zhì)的折疊方式可以幫助研究人員走進(jìn)科學(xué)和醫(yī)學(xué)研究的新紀(jì)元。

「對于我們來說,這真的是一個(gè)關(guān)鍵時(shí)刻,」DeepMind 聯(lián)合創(chuàng)始人兼 CEODemis Hassabis表示,「這個(gè)項(xiàng)目就像燈塔,這是我們關(guān)于人和資源的首次重大投資,用于解決一個(gè)根本性的、現(xiàn)實(shí)世界的重要問題?!?/p>

在 2016 年 AlphaGo 擊敗李世乭后,DeepMind 就開始將目光轉(zhuǎn)向蛋白質(zhì)折疊。盡管實(shí)踐證明,游戲是 DeepMind AI 項(xiàng)目的優(yōu)秀試驗(yàn)場,但在游戲中取得高分并非他們的終極目標(biāo)?!肝覀兊哪繕?biāo)從來就不是贏得圍棋或雅達(dá)利比賽的勝利,而是開發(fā)能夠解決蛋白質(zhì)折疊這類問題的算法,」Hassabis 表示。

為什么要預(yù)測蛋白質(zhì)結(jié)構(gòu)

人體能夠產(chǎn)生數(shù)萬甚至數(shù)百萬的蛋白質(zhì)。每個(gè)蛋白質(zhì)都是一個(gè)氨基酸鏈,而后者的類型就有 20 種。蛋白質(zhì)可以在氨基酸之間扭曲、折疊,因此一種含有數(shù)百個(gè)氨基酸的蛋白質(zhì)有可能呈現(xiàn)出數(shù)量驚人(10 的 300 次方)的結(jié)構(gòu)類型。

蛋白質(zhì)的 3D 形狀取決于其中包含的氨基酸數(shù)量和類型,而這一形狀也決定了其在人體中的功能。例如,心臟細(xì)胞蛋白質(zhì)的折疊方式可以使血流中的任何腎上腺素都粘在它們上面,以加速心率。免疫系統(tǒng)中的抗體是折疊成特定形狀的蛋白質(zhì),以鎖定入侵者。幾乎身體的每一種功能——從收縮肌肉和感受光線到將食物轉(zhuǎn)化為能量——都和蛋白質(zhì)的形狀及運(yùn)動(dòng)相關(guān)。

通常情況下,蛋白質(zhì)會(huì)呈現(xiàn)出能量效率最高的任何形狀,但它們可能會(huì)糾纏在一起或者折疊錯(cuò)誤,導(dǎo)致糖尿病、帕金森和阿茨海默癥等疾病。如果科學(xué)家可以根據(jù)蛋白質(zhì)的化學(xué)構(gòu)成來預(yù)測其形狀,他們就能知道它是做什么的,會(huì)如何出錯(cuò)并造成傷害,并設(shè)計(jì)新的蛋白質(zhì)來對抗疾病或履行其它職責(zé),比如分解環(huán)境中的塑料污染。

AI 如何改變研究方法?

正因?yàn)榈鞍踪|(zhì)的結(jié)構(gòu)如此重要,在過去的五十年中,科學(xué)家已經(jīng)能使用低溫電子顯微鏡和核磁共振等實(shí)驗(yàn)技術(shù)確定蛋白質(zhì)的形狀,但是每一種方法都依賴大量的試驗(yàn)與誤差反饋,每種結(jié)構(gòu)可能需要花費(fèi)數(shù)萬美元、歷時(shí)數(shù)年進(jìn)行研究。因此生物學(xué)家轉(zhuǎn)攻 AI 方法,以完成這一困難且單調(diào)的過程。

幸運(yùn)的是,由于基因測序成本快速降低,基因組領(lǐng)域的數(shù)據(jù)非常豐富。因此在過去幾年中,依賴于基因組數(shù)據(jù)的預(yù)測問題正越來越多地借助深度學(xué)習(xí)方法。DeepMind 非常關(guān)注這一問題,并提出了 AlphaFold,這一項(xiàng)工作目前已經(jīng)提交到了Critical Assessment of Structure Prediction (CASP)。

DeepMind 用 AlphaFold 參加了 CASP,這是一年兩次的蛋白質(zhì)折疊奧運(yùn)會(huì),吸引了來自世界各地的研究小組。比賽的目的是根據(jù)氨基酸列表來預(yù)測蛋白質(zhì)的結(jié)構(gòu),這些氨基酸列表會(huì)在幾個(gè)月內(nèi)每隔幾天發(fā)送給參賽團(tuán)隊(duì)。這些蛋白質(zhì)的結(jié)構(gòu)最近已經(jīng)通過費(fèi)力又費(fèi)錢的傳統(tǒng)方法破解,但還沒有公開。提交最準(zhǔn)確預(yù)測的團(tuán)隊(duì)將獲勝。

盡管是首次參加比賽,AlphaFold 就在 98 名參賽者中名列榜首,準(zhǔn)確地從 43 種蛋白質(zhì)中預(yù)測出了 25 種蛋白質(zhì)的結(jié)構(gòu)。而同組比賽中獲得第二名的參賽者僅準(zhǔn)確預(yù)測出了 3 種。值得一提的是,AlphaFold 關(guān)注從頭開始建模目標(biāo)形狀,且并不使用先前已經(jīng)解析的蛋白質(zhì)作為模板。AlphaFold 在預(yù)測蛋白質(zhì)結(jié)構(gòu)的物理性質(zhì)上達(dá)到了高度的準(zhǔn)確性,然后基于這些預(yù)測可以使用兩種不同的方法預(yù)測構(gòu)建完整的蛋白質(zhì)結(jié)構(gòu)。

使用神經(jīng)網(wǎng)絡(luò)預(yù)測物理屬性

AlphaFold 構(gòu)建的模型都依賴深度神經(jīng)網(wǎng)絡(luò),這些經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)可以從基因序列中預(yù)測蛋白質(zhì)的屬性。DeepMind 的研究人員表示,神經(jīng)網(wǎng)絡(luò)預(yù)測的蛋白質(zhì)屬性主要有:(a)氨基酸對之間的距離;(b)連接這些氨基酸的化學(xué)鍵及它們之間的角度。這些方法的首要進(jìn)步就是對常用技術(shù)的提升,它們可以估計(jì)氨基酸對是否彼此接近。

為了構(gòu)建 AlphaFold,DeepMind 在數(shù)千已知的蛋白質(zhì)上訓(xùn)練了一個(gè)神經(jīng)網(wǎng)絡(luò),直到它可以僅憑氨基酸預(yù)測蛋白質(zhì)的 3D 結(jié)構(gòu)。給定一種新的蛋白質(zhì),AlphaFold 利用神經(jīng)網(wǎng)絡(luò)來預(yù)測氨基酸對之間的距離,以及連接它們的化學(xué)鍵之間的角度。接著,AlphaFold 調(diào)整初步結(jié)構(gòu)以找到能效最高的排列。該項(xiàng)目花了兩周時(shí)間來預(yù)測其第一個(gè)蛋白質(zhì)結(jié)構(gòu),但現(xiàn)在幾小時(shí)內(nèi)就可以完成了。

根據(jù)神經(jīng)網(wǎng)絡(luò)預(yù)測的兩種物理屬性,DeepMind 還訓(xùn)練了一個(gè)神經(jīng)網(wǎng)絡(luò)以預(yù)測蛋白質(zhì)成對殘基(residues)之間距離的獨(dú)立分布,這些概率能組合成估計(jì)蛋白質(zhì)結(jié)構(gòu)準(zhǔn)確率的評分。此外,DeepMind 還訓(xùn)練了另一個(gè)獨(dú)立的神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)使用集群中的所有距離來估計(jì)預(yù)測的結(jié)構(gòu)與實(shí)際結(jié)構(gòu)之間的差距。

預(yù)測蛋白質(zhì)結(jié)構(gòu)的新方法

這些評分函數(shù)可以用來探索蛋白質(zhì)內(nèi)部,以找到與預(yù)測匹配的結(jié)構(gòu)。DeepMind 的第一種方法建立在結(jié)構(gòu)生物學(xué)的常用技術(shù)上,用新的蛋白質(zhì)片段反復(fù)替換蛋白質(zhì)整體結(jié)構(gòu)的某個(gè)部分。他們訓(xùn)練了一個(gè)生成神經(jīng)網(wǎng)絡(luò)來創(chuàng)造新的片段,這些片段被用來不斷提高蛋白質(zhì)結(jié)構(gòu)的評分。

先通過神經(jīng)網(wǎng)絡(luò)預(yù)測氨基酸之間的距離和化學(xué)鍵角度,然后再根據(jù)兩種物理屬性對結(jié)構(gòu)進(jìn)行評分,最后通過梯度下降優(yōu)化評分。

第二種方法是通過梯度下降來優(yōu)化評分,得到的結(jié)構(gòu)高度精確。梯度優(yōu)化被用在整個(gè)蛋白質(zhì)鏈,而不是組裝前必須單獨(dú)折疊的片段,這種做法降低了預(yù)測過程的復(fù)雜性。

未來可期

首次涉足蛋白質(zhì)折疊領(lǐng)域的成功表明,機(jī)器學(xué)習(xí)系統(tǒng)可以整合各種信息來源,幫助科學(xué)家快速找到各種復(fù)雜問題的創(chuàng)造性解決方案。人工智能已經(jīng)通過 AlphaGo 和 AlphaZero 等系統(tǒng)掌握了復(fù)雜的游戲,與此類似,利用人工智能攻克基本科學(xué)問題的未來同樣可期。

雷丁大學(xué)的研究人員 Liam McGuffin 在比賽中帶領(lǐng)得分最高的英國學(xué)術(shù)團(tuán)體。他表示,「DeepMind 今年似乎取得了更大的進(jìn)展,我想進(jìn)一步了解他們的方法。我們的資源并不充足,但我們?nèi)匀挥泻軓?qiáng)的競爭力?!?/p>

「預(yù)測蛋白質(zhì)折疊形狀非常重要,對解決很多世紀(jì)難題有重大影響。這種能力可以影響健康、生態(tài)、環(huán)境,基本上可以解決任何涉及生命系統(tǒng)的問題?!?/p>

「包括我們在內(nèi)的很多團(tuán)隊(duì)幾年來一直都在使用基于機(jī)器學(xué)習(xí)的方法,而深度學(xué)習(xí)和人工智能的進(jìn)步似乎也產(chǎn)生了越來越重要的影響。我對這個(gè)領(lǐng)域很樂觀,我覺得我們會(huì)在 21 世紀(jì) 20 年代真正解決這個(gè)問題。」McGuffin 表示。

Hassabis 也表示還有很多工作要做?!肝覀冞€沒有解決蛋白質(zhì)折疊問題,目前只是邁出了第一步。這是一個(gè)極具有挑戰(zhàn)性的問題,但我們有一個(gè)良好的體系,還有很多想法尚未付諸實(shí)踐。」

蛋白質(zhì)折疊的早期進(jìn)展令人興奮,它證明了人工智能對科學(xué)發(fā)現(xiàn)的效用。盡管在能夠?qū)膊≈委?、環(huán)境管理等方面產(chǎn)生量化影響之前,我們還有很多工作要做,但我們知道人工智能的潛力是巨大的。在一個(gè)專注于研究機(jī)器學(xué)習(xí)如何推進(jìn)科學(xué)發(fā)展的專業(yè)團(tuán)隊(duì)的努力下,我們期待看到技術(shù)能夠有所作為。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    46691

    瀏覽量

    237179
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    129

    瀏覽量

    10813

原文標(biāo)題:AlphaGo之后,DeepMind重磅推出AlphaFold:基因序列預(yù)測蛋白質(zhì)結(jié)構(gòu)

文章出處:【微信號(hào):gh_211d74f707ff,微信公眾號(hào):重慶人工智能】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    AI實(shí)火!諾貝爾又把化學(xué)獎(jiǎng)?lì)C給AI大模型

    蛋白質(zhì)結(jié)構(gòu)預(yù)測大模型——AlphaFold系列。 今年5月9日,谷歌DeepMind重磅發(fā)布了AlphaFold-3,能夠精準(zhǔn)
    的頭像 發(fā)表于 10-10 10:38 ?155次閱讀

    差示掃描量熱儀測試蛋白質(zhì)的應(yīng)用案例

    過程中可能出現(xiàn)的吸熱或放熱峰,這些峰對應(yīng)于角蛋白分子鏈的運(yùn)動(dòng)、微纖維的熔融、或蛋白質(zhì)的變性等現(xiàn)象。 ? ?通過對比受延展和熱處理前后的DSC曲線,研究人員可以了解這些處理對角蛋白復(fù)合物
    的頭像 發(fā)表于 10-09 15:45 ?132次閱讀
    差示掃描量熱儀測試<b class='flag-5'>蛋白質(zhì)</b>的應(yīng)用案例

    創(chuàng)客中國AIGC專題賽冠軍天鶩科技:AI蛋白質(zhì)設(shè)計(jì)引領(lǐng)者

    源自自然的蛋白質(zhì)與現(xiàn)代科技的創(chuàng)新精神相結(jié)合,打造蛋白質(zhì)設(shè)計(jì)與應(yīng)用的新范式。”在江西南昌舉辦的第九屆“創(chuàng)客中國”生成式人工智能(AIGC)中小企業(yè)創(chuàng)新創(chuàng)業(yè)大賽中,上海天鶩科技有限公司(下稱“天鶩科技”)分享了這一理念。 天鶩科技是
    的頭像 發(fā)表于 09-18 12:04 ?201次閱讀
    創(chuàng)客中國AIGC專題賽冠軍天鶩科技:AI<b class='flag-5'>蛋白質(zhì)</b>設(shè)計(jì)引領(lǐng)者

    EvolutionaryScale推出基于NVIDIA GPU模型的新型蛋白質(zhì)研究方案

    EvolutionaryScale 于 6 月 25 日發(fā)布了第三代 ESM 模型 ESM3,該模型可同時(shí)對蛋白質(zhì)的序列、結(jié)構(gòu)和功能進(jìn)行推理,為蛋白質(zhì)研發(fā)工程師提供了一個(gè)可編程的平臺(tái)。
    的頭像 發(fā)表于 08-23 16:45 ?592次閱讀

    利用微流控探針誘導(dǎo)的化學(xué)質(zhì)膜穿孔,實(shí)現(xiàn)單細(xì)胞胞內(nèi)蛋白質(zhì)遞送

    將小分子、核酸、蛋白質(zhì)和藥物導(dǎo)入細(xì)胞是監(jiān)測和了解細(xì)胞行為以及生物功能的重要途徑。
    的頭像 發(fā)表于 05-28 10:11 ?478次閱讀
    利用微流控探針誘導(dǎo)的化學(xué)質(zhì)膜穿孔,實(shí)現(xiàn)單細(xì)胞胞內(nèi)<b class='flag-5'>蛋白質(zhì)</b>遞送

    谷歌DeepMind推出新一代藥物研發(fā)AI模型AlphaFold 3

    谷歌DeepMind公司近日重磅推出了一款名為AlphaFold 3的全新藥物研發(fā)AI模型,這一創(chuàng)新技術(shù)將為科學(xué)家們提供前所未有的幫助,使他們能更精確地理解疾病機(jī)制,進(jìn)而開發(fā)出更高效的
    的頭像 發(fā)表于 05-10 09:35 ?352次閱讀

    DeepMind推出AlphaFold 3,預(yù)測生命分子交互,開辟全新醫(yī)療領(lǐng)域

    據(jù)悉,AlphaFold 3能精確預(yù)測人體每一個(gè)細(xì)胞分子的復(fù)雜形態(tài),以及它們之間的連接方式,并揭示微小變化如何影響可能引發(fā)疾病的生物功能。
    的頭像 發(fā)表于 05-09 14:22 ?351次閱讀

    洪亮團(tuán)隊(duì)在生信期刊JCIM發(fā)布最新成果,蛋白質(zhì)工程邁入通用人工智能時(shí)代

    發(fā)表最新研究成果:“基于微環(huán)境感知圖神經(jīng)網(wǎng)絡(luò)構(gòu)建指導(dǎo)蛋白質(zhì)定向進(jìn)化的通用人工智能”(Protein Engineering with Lightweight Graph Denoising Neural
    的頭像 發(fā)表于 04-19 17:42 ?519次閱讀
    洪亮團(tuán)隊(duì)在生信期刊JCIM發(fā)布最新成果,<b class='flag-5'>蛋白質(zhì)</b>工程邁入通用人工智能時(shí)代

    NVIDIA生成式AI研究實(shí)現(xiàn)在1秒內(nèi)生成3D形狀

    NVIDIA 研究人員使 LATTE3D (一款最新文本轉(zhuǎn) 3D 生成式 AI 模型)實(shí)現(xiàn)雙倍加速。
    的頭像 發(fā)表于 03-27 10:28 ?456次閱讀
    NVIDIA<b class='flag-5'>生成</b>式AI研究實(shí)現(xiàn)在1秒內(nèi)<b class='flag-5'>生成</b><b class='flag-5'>3D</b><b class='flag-5'>形狀</b>

    Stability AI推出Stable Video 3D模型,可制作多視角3D視頻

    SV3D_u是Stable Video 3D的一個(gè)版本,需單幅圖片即可生成運(yùn)動(dòng)軌跡視頻,無須進(jìn)行相機(jī)調(diào)整。擴(kuò)充版本的SV3D_p加入了軌道
    的頭像 發(fā)表于 03-21 14:57 ?926次閱讀

    天府錦城實(shí)驗(yàn)室在生物傳感與蛋白質(zhì)測序領(lǐng)域取得重要進(jìn)展

    3月10日,記者從天府錦城實(shí)驗(yàn)室(未來醫(yī)學(xué)城)獲悉,四川大學(xué)華西醫(yī)院臨床檢驗(yàn)醫(yī)學(xué)研究中心與生物治療全國重點(diǎn)實(shí)驗(yàn)室、天府錦城實(shí)驗(yàn)室(未來醫(yī)學(xué)城)耿佳教授和華西第二醫(yī)院陳路教授聯(lián)合團(tuán)隊(duì)在生物傳感與蛋白質(zhì)測序領(lǐng)域取得重要進(jìn)展。
    的頭像 發(fā)表于 03-17 09:10 ?877次閱讀
    天府錦城實(shí)驗(yàn)室在生物傳感與<b class='flag-5'>蛋白質(zhì)</b>測序領(lǐng)域取得重要進(jìn)展

    Adobe提出DMV3D3D生成只需30秒!讓文本、圖像都動(dòng)起來的新方法!

    因此,本文研究者的目標(biāo)是實(shí)現(xiàn)快速、逼真和通用的 3D 生成。為此,他們提出了 DMV3D。DMV3D 是一種全新的單階段的全類別擴(kuò)散模型,能直接根據(jù)
    的頭像 發(fā)表于 01-30 16:20 ?781次閱讀
    Adobe提出DMV<b class='flag-5'>3D</b>:<b class='flag-5'>3D</b><b class='flag-5'>生成</b>只需30秒!讓文本、圖像都動(dòng)起來的新方法!

    對新輔助TCHP治療響應(yīng)的HER2+乳腺癌空間蛋白質(zhì)組特征

    GeoMx IPA可以實(shí)現(xiàn)對組織中任何區(qū)域(如腫瘤區(qū)域、免疫交界區(qū)域、腫瘤微環(huán)境和正?;|(zhì)區(qū)域等)中的570多種蛋白質(zhì)進(jìn)行空間原位的表達(dá)檢測,快速發(fā)現(xiàn)新的蛋白質(zhì)生物標(biāo)記物和藥物靶點(diǎn)。
    的頭像 發(fā)表于 12-26 16:52 ?817次閱讀
    對新輔助TCHP治療響應(yīng)的HER2+乳腺癌空間<b class='flag-5'>蛋白質(zhì)</b>組特征

    3D人體生成模型HumanGaussian實(shí)現(xiàn)原理

    3D 生成領(lǐng)域,根據(jù)文本提示創(chuàng)建高質(zhì)量的 3D 人體外觀和幾何形狀對虛擬試穿、沉浸式遠(yuǎn)程呈現(xiàn)等應(yīng)用有深遠(yuǎn)的意義。傳統(tǒng)方法需要經(jīng)歷一系列人
    的頭像 發(fā)表于 12-20 16:37 ?1473次閱讀
    <b class='flag-5'>3D</b>人體<b class='flag-5'>生成</b>模型HumanGaussian實(shí)現(xiàn)原理

    人工智能驅(qū)動(dòng)蛋白質(zhì)設(shè)計(jì)取得重大突破,人類健康和環(huán)境監(jiān)測有望受益

     據(jù)華盛頓大學(xué)化學(xué)與生物工程系的David Baker教授透露,其領(lǐng)導(dǎo)的研究小組整合了深度學(xué)習(xí)算法和序列設(shè)計(jì)工具ProteinMPNN,從而實(shí)現(xiàn)了高效的蛋白質(zhì)功能性設(shè)計(jì)。
    的頭像 發(fā)表于 12-20 14:32 ?703次閱讀