0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種在視覺語言導(dǎo)航任務(wù)中提出的新方法,來探索未知環(huán)境

電子工程師 ? 來源:lp ? 2019-03-05 09:38 ? 次閱讀

CVPR 2019 接收論文編號公布以來,AI科技大本營開始陸續(xù)為大家介紹一些優(yōu)秀論文。今天推薦的論文,將與大家一起探討一種在視覺語言導(dǎo)航任務(wù)中提出的新方法,來探索未知環(huán)境。

作者

這篇論文是 UC Santa Barbara 大學(xué)(加州大學(xué)圣巴巴拉分校)與微軟研究院、Duke 大學(xué)合作完成,第一作者系 UC Santa Barbara 大學(xué)的王鑫。

據(jù) UC Santa Barbara 計算機科學(xué)系助理教授王威廉在其個人微博上發(fā)表的喜訊,這篇論文的一作是其組內(nèi)的成員,獲得了 3 個 Strong Accept,在 5165 篇投稿文章中審稿得分排名第一,并且這篇論文已經(jīng)確定將在 6 月的 CVPR 會議上進行報告。

這篇論文解決的任務(wù) vision-language navigation(VLN)我們之前介紹的并不多,所以,這次營長會先給大家簡單介紹 VLN,然后從這項任務(wù)存在的難點到解決方法、實驗效果等方面為大家介紹,感興趣的小伙伴們可以從文末的地址下載論文,詳細(xì)閱讀。

什么是 VLN?

視覺語言導(dǎo)航(vision-language navigation, VLN)任務(wù)指的是引導(dǎo)智能體或機器人在真實三維場景中能理解自然語言命令并準(zhǔn)確執(zhí)行。結(jié)合下面這張圖再形象、通俗一點解釋:假如智能體接收到“向右轉(zhuǎn),徑直走向廚房,然后左轉(zhuǎn),經(jīng)過一張桌子后進入走廊...”等一系列語言命令,它需要分析指令中的物體和動作指令,在只能看到一部分場景內(nèi)容的情況下,腦補整個全局圖,并正確執(zhí)行命令。所以這是一個結(jié)合 NLP 和 CV 兩大領(lǐng)域,一項非常有挑戰(zhàn)性的任務(wù)。

難點

雖然我們理解這項任務(wù)好像不是很難,但是放到 AI 智能體上并不像我們理解起來那么容易。對 AI 智能體來說,這項任務(wù)通常存在三大難點:

難點一:跨模態(tài)的基標(biāo)對準(zhǔn)(cross-modal grounding);簡單解釋就是將NLP 的指令與 CV 場景相對應(yīng)。

難點二:不適定反饋(ill-posed feedback);就是通常一句話里面包含多個指令,但并不是每個指令都會進行反饋,只有最終完成任務(wù)才有反饋,所以難以判斷智能體是否完全按照指令完成任務(wù)。

難點三:泛化能力問題;由于環(huán)境差異大,VLN 的模型難以泛化。

那這篇論文中,作者又做了哪些工作,獲得了評委們的一致青睞,獲得了 3 個 Strong Accept 呢?方法來了~

方法

1、RCM(Reinforced Cross-Modal Matching)模型

針對第一和第二難點,論文提出了一種全新的強化型跨模態(tài)匹配(RCM)方法,用強化學(xué)習(xí)方法將局部和全局的場景聯(lián)系起來。

RCM 模型主要由兩個模塊構(gòu)成:推理導(dǎo)航器和匹配度評估器。如圖所示,通過訓(xùn)練其中綠色的導(dǎo)航器,讓它學(xué)會理解局部的跨模態(tài)場景,推斷潛在的指令,并生成一系列動作序列。另外,論文還設(shè)置了匹配度評估器(Matching Critic)和循環(huán)重建獎勵機制,用于評價原始指令與導(dǎo)航器生成的軌跡之間的對齊情況,幫助智能體理解語言輸入,并且懲罰不符合語言指令的軌跡。

以上的方法僅僅是解決了第一個難點,所以論文還提出了一個由環(huán)境驅(qū)動的外部獎勵函數(shù),用于度量每個動作成功的信合和導(dǎo)航器之間的誤差。

2、SIL(Self-supervised Imitation Learning)方法

為了解決第三個難點,論文提出了一種自監(jiān)督模仿學(xué)習(xí)(Self-supervised Imitation Learning, SIL),其目的是讓智能體能夠自主的探索未知的環(huán)境。其具體做法是,對于一個從未見過的語言指令和目標(biāo)位置,導(dǎo)航器會得到一組可能的軌跡并將其中最優(yōu)的軌跡(采用匹配度評估器)保存到緩沖區(qū)中,然后匹配度評估器會使用之前介紹的循環(huán)重建獎勵機制來評估軌跡,SIL方法可以與多種學(xué)習(xí)方法想結(jié)合,通過模仿自己之前的最佳表現(xiàn)來得到更優(yōu)的策略。

測試結(jié)果

1、測試集:R2R(Room-to-Room)Dataset;視覺語言導(dǎo)航任務(wù)中一個真實 3D環(huán)境的數(shù)據(jù)集,包含 7189 條路徑,捕捉了大部分的視覺多樣性,21567 條人工注釋指令,其平均長度為 29 個單詞。

2、評價指標(biāo)

PL:路徑長度(Path Length)

NE:導(dǎo)航誤差(Navigation Error)

OSR:Oracle 成功率(Oracle Success Rate

SR:成功率( Success Rate)

SPL:反向路徑長度的加權(quán)成功率(Success rate weighted by inverse Path Length)

3、實驗對比:與 SOTA 進行對比,此前在 R2R 數(shù)據(jù)集上效果最優(yōu)的方法。

Baseline:Random、seq2seq、RPA 和 Speaker-Follower。

測試結(jié)果顯示,RCM 模型的效果在 SPL 指標(biāo)上明顯優(yōu)于當(dāng)前的最優(yōu)結(jié)果。

并且在 SIL 方法學(xué)習(xí)后,學(xué)習(xí)效率也有明顯的提高,在見過和未見過的場景驗證集上,并可視化了其內(nèi)部獎勵指標(biāo)。

論文地址:

https://arxiv.org/pdf/1811.10092.pdf

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 智能體
    +關(guān)注

    關(guān)注

    1

    文章

    126

    瀏覽量

    10556
  • 自然語言
    +關(guān)注

    關(guān)注

    1

    文章

    286

    瀏覽量

    13320
  • nlp
    nlp
    +關(guān)注

    關(guān)注

    1

    文章

    486

    瀏覽量

    21991

原文標(biāo)題:CVPR 2019審稿滿分論文:中國博士提出融合CV與NLP的視覺語言導(dǎo)航新方法

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    一種將NeRFs應(yīng)用于視覺定位任務(wù)新方法

    視覺定位旨在估計已知環(huán)境中捕獲的給定圖像的旋轉(zhuǎn)和位置,大致可以分為絕對姿態(tài)回歸(APR),場景坐標(biāo)回歸(SCR)和分層方法(HM)。
    的頭像 發(fā)表于 10-28 10:03 ?125次閱讀
    <b class='flag-5'>一種</b>將NeRFs應(yīng)用于<b class='flag-5'>視覺</b>定位<b class='flag-5'>任務(wù)</b>的<b class='flag-5'>新方法</b>

    SLAM:機器人如何在未知地形環(huán)境中進行導(dǎo)航

    的傳統(tǒng)導(dǎo)航方法需要預(yù)先準(zhǔn)備好的地圖,但在未知地區(qū),如果不穿越該區(qū)域,就不可能獲得這樣的地圖。這是機器人技術(shù)領(lǐng)域的個典型難題,通常被稱為“雞和蛋”的問題。機器人如何在沒有地圖的情況下在
    的頭像 發(fā)表于 10-02 16:37 ?308次閱讀

    一種完全分布式的點線協(xié)同視覺慣性導(dǎo)航系統(tǒng)

    本文中,我們提出一種完全分布式的點線協(xié)同視覺慣性導(dǎo)航系統(tǒng)。我們通過蒙特卡羅模擬和真實環(huán)境數(shù)據(jù)
    的頭像 發(fā)表于 09-30 14:45 ?283次閱讀
    <b class='flag-5'>一種</b>完全分布式的點線協(xié)同<b class='flag-5'>視覺</b>慣性<b class='flag-5'>導(dǎo)航</b>系統(tǒng)

    一種半動態(tài)環(huán)境中的定位方法

    和終身定位方法,以識別非靜態(tài)環(huán)境中的半動態(tài)物體,并提出個通用框架,將主流物體檢測算法與建圖和定位算法集成在起。建圖
    的頭像 發(fā)表于 09-30 14:40 ?185次閱讀
    <b class='flag-5'>一種</b>半動態(tài)<b class='flag-5'>環(huán)境</b>中的定位<b class='flag-5'>方法</b>

    一種無透鏡成像的新方法

    使用OAM-HHG EUV光束對高度周期性結(jié)構(gòu)進行成像的EUV聚光顯微鏡 為了研究微電子或光子元件中的納米級圖案,一種基于無透鏡成像的新方法可以實現(xiàn)近乎完美的高分辨率顯微鏡。 層析成像是一種強大的無
    的頭像 發(fā)表于 07-19 06:20 ?296次閱讀
    <b class='flag-5'>一種</b>無透鏡成像的<b class='flag-5'>新方法</b>

    一種利用光電容積描記(PPG)信號和深度學(xué)習(xí)模型對高血壓分類的新方法

    使用的方法將在以下部分中詳細(xì)闡述。 AlexNet是一種深度卷積神經(jīng)網(wǎng)絡(luò),由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton2012年提出
    發(fā)表于 05-11 20:01

    軋機牌坊滑板壓虧修復(fù)的新方法

    電子發(fā)燒友網(wǎng)站提供《軋機牌坊滑板壓虧修復(fù)的新方法.docx》資料免費下載
    發(fā)表于 03-14 16:16 ?0次下載

    氫壓機軸承位磨損維修的新方法

    電子發(fā)燒友網(wǎng)站提供《氫壓機軸承位磨損維修的新方法.docx》資料免費下載
    發(fā)表于 03-01 16:23 ?0次下載

    imec提出以亞微米像素尺寸分離顏色的新方法賦能CMOS圖像傳感器

    據(jù)麥姆斯咨詢報道,近期,美國加利福尼亞州舊金山舉行的國際電子器件會議(IEEE IEDM 2023)上,比利時納米電子學(xué)和數(shù)字技術(shù)研究與創(chuàng)新中心imec展示了一種300mm晶圓上使用標(biāo)準(zhǔn)后端制造工藝
    的頭像 發(fā)表于 12-19 16:13 ?639次閱讀
    imec<b class='flag-5'>提出</b>以亞微米像素尺寸分離顏色的<b class='flag-5'>新方法</b>賦能CMOS圖像傳感器

    一種產(chǎn)生激光脈沖新方法

    等離子體中脈沖壓縮的概念 英國和韓國的科學(xué)家提出一種產(chǎn)生激光脈沖的新方法,其功率是現(xiàn)有激光脈沖的1000多倍。 科學(xué)家們使用計算機模擬聯(lián)合研究,展示了一種壓縮光的
    的頭像 發(fā)表于 12-07 06:32 ?456次閱讀
    <b class='flag-5'>一種</b>產(chǎn)生激光脈沖<b class='flag-5'>新方法</b>

    IC封裝中快速創(chuàng)建結(jié)構(gòu)的新方法

    IC封裝中快速創(chuàng)建結(jié)構(gòu)的新方法
    的頭像 發(fā)表于 12-06 16:34 ?540次閱讀
    IC封裝中快速創(chuàng)建結(jié)構(gòu)的<b class='flag-5'>新方法</b>

    應(yīng)對傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法

    應(yīng)對傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法
    的頭像 發(fā)表于 12-05 15:32 ?524次閱讀
    應(yīng)對傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的<b class='flag-5'>新方法</b>

    基于PMSM 控制系統(tǒng)仿真建模的新方法

    電子發(fā)燒友網(wǎng)站提供《基于PMSM 控制系統(tǒng)仿真建模的新方法.pdf》資料免費下載
    發(fā)表于 11-29 11:22 ?1次下載
    基于PMSM 控制系統(tǒng)仿真建模的<b class='flag-5'>新方法</b>

    一種產(chǎn)生激光脈沖的新方法

    英國和韓國的科學(xué)家提出一種產(chǎn)生激光脈沖的新方法,其功率是現(xiàn)有激光脈沖的1000多倍。
    的頭像 發(fā)表于 11-20 16:56 ?530次閱讀
    <b class='flag-5'>一種</b>產(chǎn)生激光脈沖的<b class='flag-5'>新方法</b>

    VLSI系統(tǒng)設(shè)計的最新方法

    電子發(fā)燒友網(wǎng)站提供《VLSI系統(tǒng)設(shè)計的最新方法.pdf》資料免費下載
    發(fā)表于 11-20 11:10 ?0次下載
    VLSI系統(tǒng)設(shè)計的最<b class='flag-5'>新方法</b>