電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>機器學(xué)習(xí)算法:監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)

機器學(xué)習(xí)算法:監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

什么是深度強化學(xué)習(xí)?深度強化學(xué)習(xí)算法應(yīng)用分析

什么是深度強化學(xué)習(xí)? 眾所周知,人類擅長解決各種挑戰(zhàn)性的問題,從低級的運動控制(如:步行、跑步、打網(wǎng)球)到高級的認知任務(wù)。
2023-07-01 10:29:501002

適用于任意數(shù)據(jù)模態(tài)的自監(jiān)督學(xué)習(xí)數(shù)據(jù)增強技術(shù)

本文提出了一種適用于任意數(shù)據(jù)模態(tài)的自監(jiān)督學(xué)習(xí)數(shù)據(jù)增強技術(shù)。 ? 自監(jiān)督學(xué)習(xí)算法在自然語言處理、計算機視覺等領(lǐng)域取得了重大進展。這些自監(jiān)督學(xué)習(xí)算法盡管在概念上是通用的,但是在具體操作上是基于特定的數(shù)據(jù)
2023-09-04 10:07:04738

機器學(xué)習(xí)模型類型分類

?機器學(xué)習(xí)按照模型類型分為監(jiān)督學(xué)習(xí)模型、無監(jiān)督學(xué)習(xí)模型兩大類。 1. 有監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)通常是利用帶有專家標注的標簽的訓(xùn)練數(shù)據(jù),學(xué)習(xí)一個從輸入變量X到輸入變量Y的函數(shù)映射
2023-09-05 11:45:061161

什么是遷移學(xué)習(xí)?遷移學(xué)習(xí)的實現(xiàn)方法與工具分析

人工智能競爭,從算法模型的研發(fā)競爭,轉(zhuǎn)向數(shù)據(jù)和數(shù)據(jù)質(zhì)量的競爭,這些成功的模型和算法主要是由監(jiān)督學(xué)習(xí)推動的,而監(jiān)督學(xué)習(xí)對數(shù)據(jù)極度饑渴,需要海量數(shù)據(jù)(大數(shù)據(jù))支撐來達到應(yīng)用的精準要求。而人工智能發(fā)展更趨
2018-05-11 09:12:0011650

機器學(xué)習(xí)工程師必知的10大算法

`轉(zhuǎn)一篇好資料機器學(xué)習(xí)算法可以分為三大類:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)監(jiān)督學(xué)習(xí)可用于一個特定的數(shù)據(jù)集(訓(xùn)練集)具有某一屬性(標簽),但是其他數(shù)據(jù)沒有標簽或者需要預(yù)測標簽的情況。無監(jiān)督學(xué)習(xí)可用
2017-04-18 18:28:36

【下載】《機器學(xué)習(xí)》+《機器學(xué)習(xí)實戰(zhàn)》

、謀發(fā)展的決定性手段,這使得這一過去為分析師和數(shù)學(xué)家所專屬的研究領(lǐng)域越來越為人們所矚目。本書第一部分主要介紹機器學(xué)習(xí)基礎(chǔ),以及如何利用算法進行分類,并逐步介紹了多種經(jīng)典的監(jiān)督學(xué)習(xí)算法,如k近鄰算法
2017-06-01 15:49:24

【阿里云大學(xué)免費精品課】機器學(xué)習(xí)入門:概念原理及常用算法

的性能。2.機器學(xué)習(xí)是對能通過經(jīng)驗自動改進的計算機算法的研究。3.機器學(xué)習(xí)是用數(shù)據(jù)或以往的經(jīng)驗,以此優(yōu)化計算機程序的性能標準。機器學(xué)習(xí)算法可以分成下面幾種類別:?監(jiān)督學(xué)習(xí):從給定的訓(xùn)練數(shù)據(jù)集中學(xué)習(xí)出一
2017-06-23 13:51:15

人工智能基本概念機器學(xué)習(xí)算法

目錄人工智能基本概念機器學(xué)習(xí)算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學(xué)習(xí)算法1. BP2. GANs3. CNN4. LSTM應(yīng)用人工智能基本概念數(shù)據(jù)集:訓(xùn)練集
2021-09-06 08:21:17

反向強化學(xué)習(xí)的思路

強化學(xué)習(xí)的另一種策略(二)
2019-04-03 12:10:44

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機器監(jiān)督學(xué)習(xí)下面的分類問題?

人工智能下面有哪些機器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03

如何規(guī)劃出完美的機器學(xué)習(xí)入門路徑?| AI知識科普

的不同,機器學(xué)習(xí)可分為:監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí),半監(jiān)督學(xué)習(xí),強化學(xué)習(xí)。在這里我們講2種機器學(xué)習(xí)的常用方法:監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)是從標記的訓(xùn)練數(shù)據(jù)來推斷一個功能的機器學(xué)習(xí)任務(wù),可分為“回歸”和“分類
2018-07-27 12:54:20

深度強化學(xué)習(xí)實戰(zhàn)

內(nèi)容2:課程一: TensoRFlow入門到熟練:課程二:圖像分類:課程三:物體檢測:課程四:人臉識別:課程五:算法實現(xiàn):1、卷積神經(jīng)網(wǎng)絡(luò)CNN2、循環(huán)神經(jīng)網(wǎng)絡(luò)RNN3、強化學(xué)習(xí)DRL4、對抗性生成
2021-01-10 13:42:26

深非監(jiān)督學(xué)習(xí)-Hierarchical clustering 層次聚類python的實現(xiàn)

【深度學(xué)習(xí)基礎(chǔ)-17】非監(jiān)督學(xué)習(xí)-Hierarchical clustering 層次聚類-python實現(xiàn)
2020-04-28 10:07:39

經(jīng)典算法大全(51個C語言算法+單片機常用算法+機器學(xué)十大算法

監(jiān)督學(xué)習(xí)算法中,我們沒有目標或結(jié)果變量來預(yù)測。 通常用于不同群體的群體聚類。無監(jiān)督學(xué)習(xí)的例子:Apriori 算法,K-means。0.3 強化學(xué)習(xí) 工作原理: 強化學(xué)習(xí)(reinforcement
2018-10-23 14:31:12

強化學(xué)習(xí)在RoboCup帶球任務(wù)中的應(yīng)用劉飛

強化學(xué)習(xí)在RoboCup帶球任務(wù)中的應(yīng)用_劉飛
2017-03-14 08:00:000

基于半監(jiān)督學(xué)習(xí)的跌倒檢測系統(tǒng)設(shè)計_李仲年

基于半監(jiān)督學(xué)習(xí)的跌倒檢測系統(tǒng)設(shè)計_李仲年
2017-03-19 19:11:453

機械工程師必學(xué)的幾種算法

機器學(xué)習(xí)算法可以分為三個大類:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、強化學(xué)習(xí)。監(jiān)督學(xué)習(xí)對于有屬性(標記)的特定數(shù)據(jù)集(訓(xùn)練集)是非常有效的。無監(jiān)督學(xué)習(xí)對于在給定未標記的數(shù)據(jù)集(目標沒有提前指定)上發(fā)現(xiàn)潛在關(guān)系是非
2017-09-20 11:15:331

谷歌帶你體驗一把什么是機器學(xué)習(xí)

機器學(xué)習(xí)的本質(zhì)是模式識別。 一部分可以用于預(yù)測(有監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí)),另一類直接用于決策(強化學(xué)習(xí)),機器學(xué)習(xí)的一個核心任務(wù)即模式識別, 我們通常可以用模式識別來對我們未來研究的系統(tǒng)進行歸類, 并預(yù)測各種可能的未來結(jié)果。
2017-10-13 10:56:431626

深度強化學(xué)習(xí)是什么?有什么優(yōu)點?

監(jiān)督機器學(xué)習(xí)不同,在強化學(xué)習(xí)中,研究人員通過讓一個代理與環(huán)境交互來訓(xùn)練模型。當(dāng)代理的行為產(chǎn)生期望的結(jié)果時,它得到正反饋。例如,代理人獲得一個點數(shù)或贏得一場比賽的獎勵。簡單地說,研究人員加強了代理人的良好行為。
2018-07-13 09:33:0024321

將深度學(xué)習(xí)強化學(xué)習(xí)相結(jié)合的深度強化學(xué)習(xí)DRL

深度強化學(xué)習(xí)DRL自提出以來, 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團隊基于深度強化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強化學(xué)習(xí)DRL成推上新的熱點和高度,成為人工智能歷史上一個新的里程碑。因此,深度強化學(xué)習(xí)DRL非常值得研究。
2018-06-29 18:36:0027596

薩頓科普了強化學(xué)習(xí)、深度強化學(xué)習(xí),并談到了這項技術(shù)的潛力和發(fā)展方向

薩頓在專訪中(再次)科普了強化學(xué)習(xí)、深度強化學(xué)習(xí),并談到了這項技術(shù)的潛力,以及接下來的發(fā)展方向:預(yù)測學(xué)習(xí)
2017-12-27 09:07:1510857

基于分層強化學(xué)習(xí)的多Agent路徑規(guī)劃

針對路徑規(guī)劃算法收斂速度慢及效率低的問題,提出了一種基于分層強化學(xué)習(xí)及人工勢場的多Agent路徑規(guī)劃算法。首先,將多Agent的運行環(huán)境虛擬為一個人工勢能場,根據(jù)先驗知識確定每點的勢能值,它代表最優(yōu)
2017-12-27 14:32:020

基于LCS和LS-SVM的多機器強化學(xué)習(xí)

本文提出了一種LCS和LS-SVM相結(jié)合的多機器強化學(xué)習(xí)方法,LS-SVM獲得的最優(yōu)學(xué)習(xí)策略作為LCS的初始規(guī)則集。LCS通過與環(huán)境的交互,能更快發(fā)現(xiàn)指導(dǎo)多機器強化學(xué)習(xí)的規(guī)則,為強化學(xué)習(xí)系統(tǒng)
2018-01-09 14:43:490

基于半監(jiān)督學(xué)習(xí)框架的識別算法

問題,對半監(jiān)督學(xué)習(xí)中的協(xié)同訓(xùn)練算法進行改進,提出了一種基于多學(xué)習(xí)器協(xié)同訓(xùn)練模型的人體行為識別方法.這是一種基于半監(jiān)督學(xué)習(xí)框架的識別算法,該方法首先通過基于Q統(tǒng)計量的學(xué)習(xí)器差異性度量選擇算法來挑取出協(xié)同訓(xùn)練中基學(xué)習(xí)
2018-01-21 10:41:091

如何深度強化學(xué)習(xí) 人工智能和深度學(xué)習(xí)的進階

傳統(tǒng)上,強化學(xué)習(xí)在人工智能領(lǐng)域占據(jù)著一個合適的地位。但強化學(xué)習(xí)在過去幾年已開始在很多人工智能計劃中發(fā)揮更大的作用。
2018-03-03 14:16:563924

機器學(xué)習(xí)算法的無監(jiān)督學(xué)習(xí)的詳細介紹

and Unsupervised Learning 我們已經(jīng)學(xué)習(xí)了許多機器學(xué)習(xí)算法,包括線性回歸,Logistic回歸,神經(jīng)網(wǎng)絡(luò)以及支持向量機。這些算法都有一個共同點,即給出的訓(xùn)練樣本自身帶有標記。比如
2018-05-01 17:43:0012211

人工智能機器學(xué)習(xí)強化學(xué)習(xí)

強化學(xué)習(xí)是智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎勵信號(強化信號)函數(shù)值最大,強化學(xué)習(xí)不同于連接主義學(xué)習(xí)中的監(jiān)督學(xué)習(xí),主要表現(xiàn)在教師信號上,強化學(xué)習(xí)中由環(huán)境提供的強化信號是對產(chǎn)生動作的好壞作一種評價
2018-05-30 06:53:001234

深度解析機器學(xué)習(xí)三類學(xué)習(xí)方法

機器學(xué)習(xí)(Machine learning)領(lǐng)域。主要有三類不同的學(xué)習(xí)方法:監(jiān)督學(xué)習(xí)(Supervised learning)、非監(jiān)督學(xué)習(xí)(Unsupervised learning)、半監(jiān)督學(xué)習(xí)(Semi-supervised learning)。
2018-05-07 09:09:0113404

Python無監(jiān)督學(xué)習(xí)的幾種聚類算法包括K-Means聚類,分層聚類等詳細概述

監(jiān)督學(xué)習(xí)機器學(xué)習(xí)技術(shù)中的一類,用于發(fā)現(xiàn)數(shù)據(jù)中的模式。本文介紹用Python進行無監(jiān)督學(xué)習(xí)的幾種聚類算法,包括K-Means聚類、分層聚類、t-SNE聚類、DBSCAN聚類等。
2018-05-27 09:59:1329728

Q Learning算法學(xué)習(xí)

Q Learning算法是由Watkins于1989年在其博士論文中提出,是強化學(xué)習(xí)發(fā)展的里程碑,也是目前應(yīng)用最為廣泛的強化學(xué)習(xí)算法
2018-07-05 14:10:003368

強化學(xué)習(xí)在自動駕駛的應(yīng)用

自動駕駛汽車首先是人工智能問題,而強化學(xué)習(xí)機器學(xué)習(xí)的一個重要分支,是多學(xué)科多領(lǐng)域交叉的一個產(chǎn)物。今天人工智能頭條給大家介紹強化學(xué)習(xí)在自動駕駛的一個應(yīng)用案例,無需3D地圖也無需規(guī)則,讓汽車從零開始在二十分鐘內(nèi)學(xué)會自動駕駛。
2018-07-10 09:00:294676

什么是強化學(xué)習(xí)?純強化學(xué)習(xí)有意義嗎?強化學(xué)習(xí)有什么的致命缺陷?

強化學(xué)習(xí)是人工智能基本的子領(lǐng)域之一,在強化學(xué)習(xí)的框架中,智能體通過與環(huán)境互動,來學(xué)習(xí)采取何種動作能使其在給定環(huán)境中的長期獎勵最大化,就像在上述的棋盤游戲寓言中,你通過與棋盤的互動來學(xué)習(xí)
2018-07-15 10:56:3717106

強化學(xué)習(xí)監(jiān)督學(xué)習(xí), 非監(jiān)督學(xué)習(xí)的區(qū)別

而這時,強化學(xué)習(xí)會在沒有任何標簽的情況下,通過先嘗試做出一些行為得到一個結(jié)果,通過這個結(jié)果是對還是錯的反饋,調(diào)整之前的行為,就這樣不斷的調(diào)整,算法能夠學(xué)習(xí)到在什么樣的情況下選擇什么樣的行為可以得到最好的結(jié)果。
2018-08-21 09:18:2519123

總結(jié)機器學(xué)習(xí)小白必學(xué)的10種算法

機器學(xué)習(xí)中,有一種叫做「沒有免費的午餐」的定理。簡而言之,它指出沒有任何一種算法對所有問題都有效,在監(jiān)督學(xué)習(xí)(即預(yù)測建模)中尤其如此。
2018-08-24 10:51:075514

基于目標圖像的視覺強化學(xué)習(xí)算法,讓機器人可以同時學(xué)習(xí)多個任務(wù)

強化學(xué)習(xí)是一種訓(xùn)練主體最大化獎勵的學(xué)習(xí)機制,對于目標條件下的強化學(xué)習(xí)來說可以將獎勵函數(shù)設(shè)為當(dāng)前狀態(tài)與目標狀態(tài)之間距離的反比函數(shù),那么最大化獎勵就對應(yīng)著最小化與目標函數(shù)的距離。
2018-09-24 10:11:006779

基于強化學(xué)習(xí)的MADDPG算法原理及實現(xiàn)

之前接觸的強化學(xué)習(xí)算法都是單個智能體的強化學(xué)習(xí)算法,但是也有很多重要的應(yīng)用場景牽涉到多個智能體之間的交互。
2018-11-02 16:18:1521017

關(guān)于機器學(xué)習(xí)的超全總結(jié)

根據(jù)訓(xùn)練數(shù)據(jù)是否有標記,機器學(xué)習(xí)任務(wù)大致分為兩大類:監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)主要包括分類和回歸等,非監(jiān)督學(xué)習(xí)主要包括聚類和頻繁項集挖掘等。
2018-11-10 10:55:593765

利用機器學(xué)習(xí)來捕捉內(nèi)部漏洞的工具運用無監(jiān)督學(xué)習(xí)方法可發(fā)現(xiàn)入侵者

Darktrace新網(wǎng)絡(luò)安全公司與劍橋大學(xué)的數(shù)學(xué)家合作,開發(fā)了一種利用機器學(xué)習(xí)來捕捉內(nèi)部漏洞的工具。它運用無監(jiān)督學(xué)習(xí)方法,查看大量未標記的數(shù)據(jù),并找到不遵循典型模式的碎片。這些原始數(shù)據(jù)匯集到60多種不同的無監(jiān)督學(xué)習(xí)算法中,它們相互競爭以發(fā)現(xiàn)異常行為。
2018-11-22 16:01:501099

你想要的機器學(xué)習(xí)課程筆記在這:主要討論監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)

with experience E(一個程序從經(jīng)驗E中學(xué)習(xí)解決任務(wù)T進行某一任務(wù)量度P,通過P測量在T的表現(xiàn)而提高經(jīng)驗E(另一種定義:機器學(xué)習(xí)是用數(shù)據(jù)或以往的經(jīng)驗,以此優(yōu)化計算機程序的性能標準。) 不同類型的機器學(xué)習(xí)算法:主要討論監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí) 監(jiān)督學(xué)習(xí):利用一組已知類別的樣本調(diào)整分類器的參數(shù)
2018-12-03 17:12:01401

量化深度強化學(xué)習(xí)算法的泛化能力

OpenAI 近期發(fā)布了一個新的訓(xùn)練環(huán)境 CoinRun,它提供了一個度量智能體將其學(xué)習(xí)經(jīng)驗活學(xué)活用到新情況的能力指標,而且還可以解決一項長期存在于強化學(xué)習(xí)中的疑難問題——即使是廣受贊譽的強化算法在訓(xùn)練過程中也總是沒有運用監(jiān)督學(xué)習(xí)的技術(shù)。
2019-01-01 09:22:002122

如何用Python進行無監(jiān)督學(xué)習(xí)

監(jiān)督學(xué)習(xí)是一種用于在數(shù)據(jù)中查找模式的機器學(xué)習(xí)技術(shù)。無監(jiān)督算法給出的數(shù)據(jù)不帶標記,只給出輸入變量(X),沒有相應(yīng)的輸出變量。在無監(jiān)督學(xué)習(xí)中,算法自己去發(fā)現(xiàn)數(shù)據(jù)中有趣的結(jié)構(gòu)。
2019-01-21 17:23:003915

聚焦 | 新技術(shù)“紅”不過十年?半監(jiān)督學(xué)習(xí)卻成例外?

就目前來看,半監(jiān)督學(xué)習(xí)是一個很有潛力的方向。
2019-06-18 17:24:142249

谷歌發(fā)布非政策強化學(xué)習(xí)算法OPC的最新研究機器學(xué)習(xí)即將開辟新篇章?

在谷歌最新的論文中,研究人員提出了“非政策強化學(xué)習(xí)算法OPC,它是強化學(xué)習(xí)的一種變體,它能夠評估哪種機器學(xué)習(xí)模型將產(chǎn)生最好的結(jié)果。數(shù)據(jù)顯示,OPC比基線機器學(xué)習(xí)算法有著顯著的提高,更加穩(wěn)健可靠。
2019-06-22 11:17:083374

關(guān)于機器學(xué)習(xí)的一點

機器學(xué)習(xí)中的監(jiān)督學(xué)習(xí)為例,監(jiān)督學(xué)習(xí)是從一組帶有標記的數(shù)據(jù)中學(xué)習(xí)
2019-07-04 15:31:49303

最常見的機器學(xué)習(xí)面試問題及其相應(yīng)的回答

監(jiān)督學(xué)習(xí)中,機器在標記數(shù)據(jù)的幫助下進行訓(xùn)練,即帶有正確答案標記的數(shù)據(jù)。而在無監(jiān)督機器學(xué)習(xí)中,模型自主發(fā)現(xiàn)信息進行學(xué)習(xí)。與監(jiān)督學(xué)習(xí)模型相比,無監(jiān)督模型更適合于執(zhí)行困難的處理任務(wù)。
2019-09-20 15:01:302999

解析人工智能中深度學(xué)習(xí)的經(jīng)典算法

深度學(xué)習(xí)作為機器學(xué)習(xí)的一個分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)
2020-01-30 09:29:002924

深度強化學(xué)習(xí)你知道是什么嗎

強化學(xué)習(xí)非常適合實現(xiàn)自主決策,相比之下監(jiān)督學(xué)習(xí)與無監(jiān)督學(xué)習(xí)技術(shù)則無法獨立完成此項工作。
2019-12-10 14:34:571092

懶惰強化學(xué)習(xí)算法在發(fā)電調(diào)控REG框架的應(yīng)用

惰性是人類的天性,然而惰性能讓人類無需過于復(fù)雜的練習(xí)就能學(xué)習(xí)某項技能,對于人工智能而言,是否可有基于惰性的快速學(xué)習(xí)的方法?本文提出一種懶惰強化學(xué)習(xí)(Lazy reinforcement learning, LRL) 算法。
2020-01-16 17:40:00745

機器學(xué)習(xí)如何為云端的頂級服務(wù)

機器學(xué)習(xí)(ML)是人工智能(AI)的子集,它試圖以幾種不同的方式從數(shù)據(jù)集“學(xué)習(xí)”,其中包括監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)
2020-03-14 10:50:01564

監(jiān)督機器學(xué)習(xí)如何保護金融

監(jiān)督機器學(xué)習(xí)是近年才發(fā)展起來的反欺詐手法。目前國內(nèi)反欺詐金融服務(wù)主要是應(yīng)用黑白名單、有監(jiān)督學(xué)習(xí)和無監(jiān)督機器學(xué)習(xí)的方法來實現(xiàn)。
2020-05-01 22:11:00861

深度強化學(xué)習(xí)的概念和工作原理的詳細資料說明

深度學(xué)習(xí)DL是機器學(xué)習(xí)中一種基于對數(shù)據(jù)進行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強化學(xué)習(xí)RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個最優(yōu)策略。強化學(xué)習(xí)機器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法
2020-05-16 09:20:403150

深度強化學(xué)習(xí)到底是什么?它的工作原理是怎么樣的

深度學(xué)習(xí)DL是機器學(xué)習(xí)中一種基于對數(shù)據(jù)進行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強化學(xué)習(xí)RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個最優(yōu)策略。強化學(xué)習(xí)機器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法
2020-06-13 11:39:405529

機器學(xué)習(xí)算法中有監(jiān)督和無監(jiān)督學(xué)習(xí)的區(qū)別

監(jiān)督學(xué)習(xí)的好處之一是,它不需要監(jiān)督學(xué)習(xí)必須經(jīng)歷的費力的數(shù)據(jù)標記過程。但是,要權(quán)衡的是,評估其性能的有效性也非常困難。相反,通過將監(jiān)督學(xué)習(xí)算法的輸出與測試數(shù)據(jù)的實際標簽進行比較,可以很容易地衡量監(jiān)督學(xué)習(xí)算法的準確性。
2020-07-07 10:18:365308

人工智能、機器學(xué)習(xí)以及深度學(xué)習(xí)三者之間的關(guān)系是什么?

來“訓(xùn)練”,通過各種算法從數(shù)據(jù)中學(xué)習(xí)如何完成任務(wù)。機器學(xué)習(xí)傳統(tǒng)的算法包括決策樹、聚類、貝葉斯分類等。從學(xué)習(xí)方法上來分可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、集成學(xué)習(xí)、深度學(xué)習(xí)強化學(xué)習(xí)。
2020-07-26 11:14:4410904

復(fù)雜應(yīng)用中運用人工智能核心 強化學(xué)習(xí)

近期,有不少報道強化學(xué)習(xí)算法在 GO、Dota 2 和 Starcraft 2 等一系列游戲中打敗了專業(yè)玩家的新聞。強化學(xué)習(xí)是一種機器學(xué)習(xí)類型,能夠在電子游戲、機器人、自動駕駛等復(fù)雜應(yīng)用中運用人工智能。
2020-07-27 08:50:15715

基于PPO強化學(xué)習(xí)算法的AI應(yīng)用案例

Viet Nguyen就是其中一個。這位來自德國的程序員表示自己只玩到了第9個關(guān)卡。因此,他決定利用強化學(xué)習(xí)AI算法來幫他完成未通關(guān)的遺憾。
2020-07-29 09:30:162429

了解機器學(xué)習(xí)的十大算法

機器學(xué)習(xí)領(lǐng)域,有種說法叫做“世上沒有免費的午餐”,簡而言之,它是指沒有任何一種算法能在每個問題上都能有最好的效果,這個理論在監(jiān)督學(xué)習(xí)方面體現(xiàn)得尤為重要。
2020-07-31 16:06:10854

詳談機器學(xué)習(xí)及其三大分類

本節(jié)概述機器學(xué)習(xí)及其三個分類(監(jiān)督學(xué)習(xí)、非監(jiān)督學(xué)習(xí)強化學(xué)習(xí))。首先,與機器學(xué)習(xí)相關(guān)的術(shù)語有人工智能(Artificial Intelligence,AI)、機器學(xué)習(xí)(Machine Learning,ML)、強化學(xué)習(xí)、深度學(xué)習(xí)等,這里對這些術(shù)語進行簡單的整理。
2020-08-14 12:24:4723092

最基礎(chǔ)的半監(jiān)督學(xué)習(xí)

導(dǎo)讀 最基礎(chǔ)的半監(jiān)督學(xué)習(xí)的概念,給大家一個感性的認識。 半監(jiān)督學(xué)習(xí)(SSL)是一種機器學(xué)習(xí)技術(shù),其中任務(wù)是從一個小的帶標簽的數(shù)據(jù)集和相對較大的未帶標簽的數(shù)據(jù)中學(xué)習(xí)得到的。SSL的目標是要比單獨
2020-11-02 16:08:142344

監(jiān)督學(xué)習(xí)最基礎(chǔ)的3個概念

有趣的方法,用來解決機器學(xué)習(xí)中缺少標簽數(shù)據(jù)的問題。SSL利用未標記的數(shù)據(jù)和標記的數(shù)據(jù)集來學(xué)習(xí)任務(wù)。SSL的目標是得到比單獨使用標記數(shù)據(jù)訓(xùn)練的監(jiān)督學(xué)習(xí)模型更好的結(jié)果。這是關(guān)于半監(jiān)督學(xué)習(xí)的系列文章的第2部分,詳細介紹了一些基本的SSL技
2020-11-02 16:14:552651

一文詳談機器學(xué)習(xí)強化學(xué)習(xí)

強化學(xué)習(xí)屬于機器學(xué)習(xí)中的一個子集,它使代理能夠理解在特定環(huán)境中執(zhí)行特定操作的相應(yīng)結(jié)果。目前,相當(dāng)一部分機器人就在使用強化學(xué)習(xí)掌握種種新能力。
2020-11-06 15:33:491552

機器學(xué)習(xí)的基本過程及關(guān)鍵要素

機器學(xué)習(xí)的基本過程,羅列了幾個主要流程和關(guān)鍵要素;繼而展開介紹機器學(xué)習(xí)主要的算法框架,包括監(jiān)督學(xué)習(xí)算法,無監(jiān)督學(xué)習(xí)算法和常用的降維,特征選擇算法等;最后在業(yè)務(wù)實踐的過程中,給出了一個可行的項目管理流程,可供參考。
2020-11-12 10:28:4810451

為什么半監(jiān)督學(xué)習(xí)機器學(xué)習(xí)的未來?

為什么半監(jiān)督學(xué)習(xí)機器學(xué)習(xí)的未來。 監(jiān)督學(xué)習(xí)是人工智能領(lǐng)域的第一種學(xué)習(xí)類型。從它的概念開始,無數(shù)的算法,從簡單的邏輯回歸到大規(guī)模的神經(jīng)網(wǎng)絡(luò),都已經(jīng)被研究用來提高精確度和預(yù)測能力。 然而,一個重大突破
2020-11-27 10:42:073610

監(jiān)督學(xué)習(xí):比監(jiān)督學(xué)習(xí)做的更好

監(jiān)督學(xué)習(xí)是人工智能領(lǐng)域的第一種學(xué)習(xí)類型。從它的概念開始,無數(shù)的算法,從簡單的邏輯回歸到大規(guī)模的神經(jīng)網(wǎng)絡(luò),都已經(jīng)被研究用來提高精...
2020-12-08 23:32:541096

83篇文獻、萬字總結(jié)強化學(xué)習(xí)之路

深度強化學(xué)習(xí)是深度學(xué)習(xí)強化學(xué)習(xí)相結(jié)合的產(chǎn)物,它集成了深度學(xué)習(xí)在視覺等感知問題上強大的理解能力,以及強化學(xué)習(xí)的決策能力,實現(xiàn)了...
2020-12-10 18:32:50374

DeepMind發(fā)布強化學(xué)習(xí)庫RLax

RLax(發(fā)音為“ relax”)是建立在JAX之上的庫,它公開了用于實施強化學(xué)習(xí)智能體的有用構(gòu)建塊。。報道:深度強化學(xué)習(xí)實驗室作者:DeepRL ...
2020-12-10 18:43:23499

強化學(xué)習(xí)在智能對話上的應(yīng)用介紹

本文主要介紹深度強化學(xué)習(xí)在任務(wù)型對話上的應(yīng)用,兩者的結(jié)合點主要是將深度強化學(xué)習(xí)應(yīng)用于任務(wù)型對話的策略學(xué)習(xí)上來源:騰訊技術(shù)工程微信號
2020-12-10 19:02:45781

機器學(xué)習(xí)中若干典型的目標函數(shù)構(gòu)造方法

幾乎所有的機器學(xué)習(xí)算法都歸結(jié)為求解最優(yōu)化問題。有監(jiān)督學(xué)習(xí)算法在訓(xùn)練時通過優(yōu)化一個目標函數(shù)而得到模型,然后用模型進行預(yù)測。無監(jiān)督學(xué)習(xí)算法通常通過優(yōu)化一個目標函數(shù)完成數(shù)據(jù)降維或聚類。強化學(xué)習(xí)算法在訓(xùn)練
2020-12-26 09:52:103816

深度學(xué)習(xí):基于語境的文本分類弱監(jiān)督學(xué)習(xí)

高成本的人工標簽使得弱監(jiān)督學(xué)習(xí)備受關(guān)注。seed-driven 是弱監(jiān)督學(xué)習(xí)中的一種常見模型。該模型要求用戶提供少量的seed words,根據(jù)seed words對未標記的訓(xùn)練數(shù)據(jù)生成偽標簽,增加
2021-01-18 16:04:272657

機器學(xué)習(xí)的類型介紹

機器學(xué)習(xí)可以分為監(jiān)督學(xué)習(xí),半監(jiān)督學(xué)習(xí),非監(jiān)督學(xué)習(xí),強化學(xué)習(xí),深度學(xué)習(xí)等。監(jiān)督學(xué)習(xí)是先用帶有標簽的數(shù)據(jù)集合學(xué)習(xí)得到一個模型,然后再使用這個模型對新的標本進行預(yù)測。格物斯坦認為:帶標簽的數(shù)據(jù)進行特征提取
2021-03-12 16:01:272908

密度峰值聚類算法實現(xiàn)LGG的半監(jiān)督學(xué)習(xí)

聚類算法,迭代地從數(shù)據(jù)集中篩選出多個中心點,以每個中心點為簇中心進行局部聚類,并以中心點為頂點構(gòu)建圖,實現(xiàn)基于LGC的半監(jiān)督學(xué)習(xí)。實驗結(jié)果表明,優(yōu)化后的LGC方法在D31、 Aggregation等數(shù)據(jù)集上具有較好的魯棒性,在標注正確率
2021-03-11 11:21:5721

基于人工智能的自監(jiān)督學(xué)習(xí)詳解

監(jiān)督學(xué)習(xí)讓 AI 系統(tǒng)能夠從很少的數(shù)據(jù)中學(xué)習(xí)知識,這樣才能識別和理解世界上更微妙、更不常見的表示形式。
2021-03-30 17:09:355596

機器學(xué)習(xí)中的無模型強化學(xué)習(xí)算法及研究綜述

強化學(xué)習(xí)( Reinforcement learning,RL)作為機器學(xué)習(xí)領(lǐng)域中與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列的第三種學(xué)習(xí)范式,通過與環(huán)境進行交互來學(xué)習(xí),最終將累積收益最大化。常用的強化學(xué)習(xí)算法分為
2021-04-08 11:41:5811

模型化深度強化學(xué)習(xí)應(yīng)用研究綜述

深度強化學(xué)習(xí)(DRL)作為機器學(xué)習(xí)的重要分攴,在 Alphago擊敗人類后受到了廣泛關(guān)注。DRL以種試錯機制與環(huán)境進行交互,并通過最大化累積獎賞最終得到最優(yōu)策略。強化學(xué)習(xí)可分為無模型強化學(xué)習(xí)和模型
2021-04-12 11:01:529

當(dāng)機器人遇見強化學(xué)習(xí),會碰出怎樣的火花?

當(dāng)機器人遇見強化學(xué)習(xí),會碰出怎樣的火花? 一名叫 Cassie 的機器人,給出了生動演繹。 最近,24 歲的中國南昌小伙李鐘毓和其所在團隊,用強化學(xué)習(xí)教 Cassie 走路 ,目前它已學(xué)會蹲伏走路
2021-04-13 09:35:092164

一種新型的多智能體深度強化學(xué)習(xí)算法

一種新型的多智能體深度強化學(xué)習(xí)算法
2021-06-23 10:42:4736

《自動化學(xué)報》—多Agent深度強化學(xué)習(xí)綜述

多Agent 深度強化學(xué)習(xí)綜述 來源:《自動化學(xué)報》,作者梁星星等 摘 要?近年來,深度強化學(xué)習(xí)(Deep reinforcement learning,DRL) 在諸多復(fù)雜序貫決策問題中取得巨大
2022-01-18 10:08:011226

機器學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)應(yīng)用在哪些領(lǐng)域

監(jiān)督學(xué)習(xí)|機器學(xué)習(xí)| 集成學(xué)習(xí)|進化計算| 非監(jiān)督學(xué)習(xí)| 半監(jiān)督學(xué)習(xí)| 自監(jiān)督學(xué)習(xí)|?無監(jiān)督學(xué)習(xí)| 隨著人工智能、元宇宙、數(shù)據(jù)安全、可信隱私用計算、大數(shù)據(jù)等領(lǐng)域的快速發(fā)展,自監(jiān)督學(xué)習(xí)脫穎而出,致力于
2022-01-20 10:52:104518

監(jiān)督學(xué)習(xí)的一些思考

監(jiān)督學(xué)習(xí)的流行是勢在必然的。在各種主流有監(jiān)督學(xué)習(xí)任務(wù)都做到很成熟之后,數(shù)據(jù)成了最重要的瓶頸。從無標注數(shù)據(jù)中學(xué)習(xí)有效信息一直是...
2022-01-26 18:50:171

融合零樣本學(xué)習(xí)和小樣本學(xué)習(xí)的弱監(jiān)督學(xué)習(xí)方法綜述

融合零樣本學(xué)習(xí)和小樣本學(xué)習(xí)的弱監(jiān)督學(xué)習(xí)方法綜述 來源:《系統(tǒng)工程與電子技術(shù)》,作者潘崇煜等 摘 要:?深度學(xué)習(xí)模型嚴重依賴于大量人工標注的數(shù)據(jù),使得其在數(shù)據(jù)缺乏的特殊領(lǐng)域內(nèi)應(yīng)用嚴重受限。面對數(shù)據(jù)缺乏
2022-02-09 11:22:371731

一種基于偽標簽半監(jiān)督學(xué)習(xí)的小樣本調(diào)制識別算法

一種基于偽標簽半監(jiān)督學(xué)習(xí)的小樣本調(diào)制識別算法 來源:《西北工業(yè)大學(xué)學(xué)報》,作者史蘊豪等 摘 要:針對有標簽樣本較少條件下的通信信號調(diào)制識別問題,提出了一種基于偽標簽半監(jiān)督學(xué)習(xí)技術(shù)的小樣本調(diào)制方式分類
2022-02-10 11:37:36627

17個機器學(xué)習(xí)的常用算法!

源自:AI知識干貨 根據(jù)數(shù)據(jù)類型的不同,對一個問題的建模有不同的方式。在機器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會考慮算法學(xué)習(xí)方式。在機器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個不錯
2022-08-22 09:57:331446

監(jiān)督學(xué)習(xí)代碼庫存在的問題與挑戰(zhàn)

當(dāng)使用監(jiān)督學(xué)習(xí)(Supervised Learning)對大量高質(zhì)量的標記數(shù)據(jù)(Labeled Data)進行訓(xùn)練時,神經(jīng)網(wǎng)絡(luò)模型會產(chǎn)生有競爭力的結(jié)果。例如,根據(jù)Paperswithcode網(wǎng)站統(tǒng)計
2022-10-18 16:28:03939

強化學(xué)習(xí)的基礎(chǔ)知識和6種基本算法解釋

來源:DeepHub IMBA 強化學(xué)習(xí)的基礎(chǔ)知識和概念簡介(無模型、在線學(xué)習(xí)、離線強化學(xué)習(xí)等) 機器學(xué)習(xí)(ML)分為三個分支:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)。 監(jiān)督學(xué)習(xí)(SL) : 關(guān)注在給
2022-12-20 14:00:02828

7個流行的強化學(xué)習(xí)算法及代碼實現(xiàn)

作者:Siddhartha Pramanik 來源:DeepHub IMBA 目前流行的強化學(xué)習(xí)算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。這些算法
2023-02-03 20:15:06747

機器學(xué)習(xí)算法的分類

根據(jù)有無標簽,監(jiān)督學(xué)習(xí)可分類為:傳統(tǒng)的監(jiān)督學(xué)習(xí)(Traditional Supervised Learning)、非監(jiān)督學(xué)習(xí)(Unsupervised Learning)、半監(jiān)督學(xué)習(xí)(Semi-supervised Learning)。
2023-04-18 16:26:13630

徹底改變算法交易:強化學(xué)習(xí)的力量

強化學(xué)習(xí)(RL)是人工智能的一個子領(lǐng)域,專注于決策過程。與其他形式的機器學(xué)習(xí)相比,強化學(xué)習(xí)模型通過與環(huán)境交互并以獎勵或懲罰的形式接收反饋來學(xué)習(xí)
2023-06-09 09:23:23355

每日一課 | 智慧燈桿人工智能之實踐方法二:機器學(xué)習(xí)

3.機器學(xué)習(xí)谷歌CEO桑達爾·皮查伊在一封致股東信中,把機器學(xué)習(xí)譽為人工智能和計算的真正未來,可想而知機器學(xué)習(xí)在人工智能研究領(lǐng)域的重要地位。機器學(xué)習(xí)的方式包括有監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)強化學(xué)習(xí)
2022-03-22 09:50:11470

強化學(xué)習(xí)的基礎(chǔ)知識和6種基本算法解釋

來源:DeepHubIMBA強化學(xué)習(xí)的基礎(chǔ)知識和概念簡介(無模型、在線學(xué)習(xí)、離線強化學(xué)習(xí)等)機器學(xué)習(xí)(ML)分為三個分支:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)。監(jiān)督學(xué)習(xí)(SL):關(guān)注在給定標記訓(xùn)練數(shù)據(jù)
2023-01-05 14:54:05419

7個流行的強化學(xué)習(xí)算法及代碼實現(xiàn)

作者:SiddharthaPramanik來源:DeepHubIMBA目前流行的強化學(xué)習(xí)算法包括Q-learning、SARSA、DDPG、A2C、PPO、DQN和TRPO。這些算法已被用于在游戲
2023-02-06 15:06:38665

基于強化學(xué)習(xí)的目標檢測算法案例

摘要:基于強化學(xué)習(xí)的目標檢測算法在檢測過程中通常采用預(yù)定義搜索行為,其產(chǎn)生的候選區(qū)域形狀和尺寸變化單一,導(dǎo)致目標檢測精確度較低。為此,在基于深度強化學(xué)習(xí)的視覺目標檢測算法基礎(chǔ)上,提出聯(lián)合回歸與深度
2023-07-19 14:35:020

深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程

了基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)方法。 深度學(xué)習(xí)算法可以分為兩大類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)的基本任務(wù)是訓(xùn)練模型去學(xué)習(xí)輸入數(shù)據(jù)的特征和其對應(yīng)的標簽,然后用于新數(shù)據(jù)的預(yù)測。而無監(jiān)督學(xué)習(xí)通常用于聚類、降維和生成模型等任務(wù)中
2023-08-17 16:11:26638

機器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

的區(qū)別。 1. 機器學(xué)習(xí) 機器學(xué)習(xí)是指通過數(shù)據(jù)使機器能夠自動地學(xué)習(xí)和改進性能的算法機器學(xué)習(xí)是人工智能的一個重要分支,它通過一系列的訓(xùn)練樣本,讓機器從數(shù)據(jù)中學(xué)習(xí)規(guī)律,從而得出預(yù)測或決策。機器學(xué)習(xí)算法可以分為有監(jiān)督學(xué)習(xí)
2023-08-17 16:11:402734

機器學(xué)習(xí)算法匯總 機器學(xué)習(xí)算法分類 機器學(xué)習(xí)算法模型

機器學(xué)習(xí)算法匯總 機器學(xué)習(xí)算法分類 機器學(xué)習(xí)算法模型 機器學(xué)習(xí)是人工智能的分支之一,它通過分析和識別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來的決策和預(yù)測。在機器學(xué)習(xí)中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48632

機器學(xué)習(xí)算法總結(jié) 機器學(xué)習(xí)算法是什么 機器學(xué)習(xí)算法優(yōu)缺點

機器學(xué)習(xí)算法總結(jié) 機器學(xué)習(xí)算法是什么?機器學(xué)習(xí)算法優(yōu)缺點? 機器學(xué)習(xí)算法總結(jié) 機器學(xué)習(xí)算法是一種能夠從數(shù)據(jù)中自動學(xué)習(xí)算法。它能夠從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)特征,進而對未知數(shù)據(jù)進行分類、回歸、聚類等任務(wù)。通過
2023-08-17 16:11:50939

機器學(xué)習(xí)算法入門 機器學(xué)習(xí)算法介紹 機器學(xué)習(xí)算法對比

機器學(xué)習(xí)算法入門 機器學(xué)習(xí)算法介紹 機器學(xué)習(xí)算法對比 機器學(xué)習(xí)算法入門、介紹和對比 隨著機器學(xué)習(xí)的普及,越來越多的人想要了解和學(xué)習(xí)機器學(xué)習(xí)算法。在這篇文章中,我們將會簡單介紹機器學(xué)習(xí)算法的基本概念
2023-08-17 16:27:15569

機器學(xué)習(xí)有哪些算法?機器學(xué)習(xí)分類算法有哪些?機器學(xué)習(xí)預(yù)判有哪些算法?

有許多不同的類型和應(yīng)用。根據(jù)機器學(xué)習(xí)的任務(wù)類型,可以將其分為幾種不同的算法類型。本文將介紹機器學(xué)習(xí)算法類型以及分類算法和預(yù)測算法。 機器學(xué)習(xí)算法類型 1. 監(jiān)督學(xué)習(xí)算法監(jiān)督學(xué)習(xí)算法中,已知標記數(shù)據(jù)和相應(yīng)的輸出
2023-08-17 16:30:111245

深度學(xué)習(xí)的由來 深度學(xué)習(xí)的經(jīng)典算法有哪些

深度學(xué)習(xí)作為機器學(xué)習(xí)的一個分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。兩種方法都具有其獨特的學(xué)習(xí)模型:多層感知機 、卷積神經(jīng)網(wǎng)絡(luò)等屬于監(jiān) 督學(xué)習(xí);深度置信網(wǎng) 、自動編碼器 、去噪自動編碼器 、稀疏編碼等屬于無監(jiān)督學(xué)習(xí)
2023-10-09 10:23:42303

什么是強化學(xué)習(xí)

強化學(xué)習(xí)機器學(xué)習(xí)的方式之一,它與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列,是三種機器學(xué)習(xí)訓(xùn)練方法之一。 在圍棋上擊敗世界第一李世石的 AlphaGo、在《星際爭霸2》中以 10:1 擊敗了人類頂級職業(yè)玩家
2023-10-30 11:36:401051

已全部加載完成