電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>類型>參考設(shè)計(jì)>AD799x-適用于微芯片微控制器平臺的無操作系統(tǒng)驅(qū)動(dòng)程序

AD799x-適用于微芯片微控制器平臺的無操作系統(tǒng)驅(qū)動(dòng)程序

2021-04-23 | pdf | 1.91MB | 次下載 | 2積分

資料介紹

This version (22 Jul 2019 13:13) was approved by Andrei Drimbarean.The Previously approved version (10 Jul 2013 15:04) is available.Diff

AD799x - No-OS Driver for Microchip Microcontroller Platforms

Supported Devices

Evaluation Boards

Overview

The AD7991/AD7995/AD7999 are 12-/10-/8-bit, low power, successive approximation ADCs with an I2C?-compatible interface. Each part operates from a single 2.7 V to 5.5 V power supply and features a 1 μs conversion time.

Each AD7991/AD7995/AD7999 provides a 2-wire serial interface compatible with I2C interfaces. The AD7991 and AD7995 come in two versions and each version has an individual I2C address (see Table 8 of data sheet for address and part number selection). This allows two of the same devices to be connected to the same I2C bus. Both versions support standard, fast, and high speed I2C interface modes. The AD7999 comes in one version.

The AD7991/AD7995/AD7999 normally remain in a shutdown state, powering up only for conversions. The conversion process is controlled by a command mode, during which each I2C read operation initiates a conversion and returns the result over the I2C bus.

When four channels are used as analog inputs, the reference for the part is taken from VDD; this allows the widest dynamic input range to the ADC. Therefore, the analog input range to the ADC is 0 V to VDD. An external reference, applied through the VIN3/VREF input, can also be used with this part.

Applications

  • System Monitoring
  • Battery Powered Systems
  • Data Acquisition
  • Medical Instruments

01 Oct 2012 09:58 · Dragos Bogdan

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.

Driver Description

The driver contains two parts:

  • The driver for the AD799x part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the AD799x driver can be used exactly as it is provided.

There are three functions which are called by the AD799x driver:

  • I2C_Init() – initializes the communication peripheral.
  • I2C_Write() – writes data to the device.
  • I2C_Read() – reads data from the device.

I2C driver architecture

The following functions are implemented in this version of AD799x driver:

Function Description
char AD799x_Init(char partNumber, char deviceVersion) Initializes I2C.
void AD799x_SetConfigurationReg(unsigned char registerValue) Writes data into the Configuration Register.
void AD799x_GetConversionResult(short* convValue, char* channel) Reads the High byte and the Low byte of the conversion.
float AD799x_ConvertToVolts(short rawSample, float vRef) Converts a raw sample to volts.
01 Oct 2012 14:59 · Dragos Bogdan

Downloads

Digilent Cerebot MX3cK Quick Start Guide

This section contains a description of the steps required to run the AD7991 demonstration project on a Digilent Cerebot MX3cK platform.

Required Hardware

Required Software

The AD7991 demonstration project for PIC32MX320F128H consists of three parts: the AD799x Driver, the PmodAD2 Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.

All three parts have to be downloaded.

Hardware Setup

A PmodAD2 has to be connected to the J2 connector of Cerebot MX3cK development board.


  • Using JP1 jumper you can either have 4 input channels or 3 input channels.


Reference Project Overview

The following commands were implemented in this version of AD7991 reference project for Cerebot MX3cK board.

Command Description
help? Displays all available commands.
voltage? Initiates a conversion and displays the captured voltage for selected channel. Accepted values:
0..3 - selected channel.
register? Initiates a conversion and displays the data register in decimal format for selected channel. Accepted values:
0..3 - selected channel.

Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.

The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.


  • The reference voltage for the AD7991 is the supply voltage which is 3.3V.


Software Project Setup

This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.

  • Run the MPLAB X integrated development environment.
  • Choose to create a new project.
  • In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.

  • In the Select Device window choose PIC32MX320F128H device and press Next.

  • In the Select Tool window select the desired hardware tool and press Next.

  • In the Select Compiler window chose the XC32 compiler and press Next.

  • In the Select Project Name and Folder window choose a name and a location for the project.

  • After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.

  • The project is ready to be built and downloaded on the development board.

05 Jul 2012 14:45

Digilent Cerebot MC7 Quick Start Guide

This section contains a description of the steps required to run the AD7991 demonstration project on a Digilent Cerebot MC7 platform.

Required Hardware

Required Software

Hardware Setup

A PmodAD2 has to be connected to the J6 connector of Cerebot MC7 development board.

Reference Project Overview

Following commands were implemented in this version of AD7991 reference project for Cerebot MC7 board.

Command Description
help? Displays all available commands.
channel= Selects the channel that will be affected by the other commands. Accepted values: 0 – 3 (one channel).
channel? Displays the selected channel.
voltage? Initiates a conversion and displays the captured voltage.
register? Initiates a conversion and displays the raw data in decimal format.

Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.

The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.

Software Project Setup

This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.

  • Run the MPLAB X integrated development environment.
  • Choose to create a new project.
  • In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.

  • In the Select Device window choose dsPIC33FJ128MC706A device and press Next.

  • In the Select Tool window select the desired hardware tool and press Next.

  • In the Select Compiler window chose the XC16 compiler and press Next.

  • In the Select Project Name and Folder window choose a name and a location for the project.

  • After the project is created, the source files have to be copied in the project folder and included in the project.

  • The project is ready to be built and downloaded on the development board.

16 Jul 2012 16:48

Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project

This section contains a description of the steps required to run the AD7991 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.

Required Hardware

Required Software

Hardware Setup

A PmodAD2 has to be connected to the J2 connector of Cerebot MX3cK development board.

Reference Project Overview

Following commands were implemented in this version of AD7991 chipKIT reference project for Cerebot MX3cK board.

Command Description
help? Displays all available commands.
channel= Selects the channel that will be affected by the other commands. Accepted values: 0 – 3 (one channel).
channel? Displays the selected channel.
voltage? Initiates a conversion and displays the captured voltage.
register? Initiates a conversion and displays the raw data in decimal format.

Commands can be executed using the serial monitor.

Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.

The following image shows a list of commands in the serial monitor.

Software Project Setup

This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.

  • Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
  • Unzip the downloaded file in the libraries folder.
  • Run the MPIDE environment.
  • You should see the new library under Sketch→Import Library, under Contributed.

  • Also you should see under File→Examples the demo project for the ADI library.
  • Select the ADIDriver example.

  • Select the Cerebot MX3cK board from Tools→Board.
  • Select the corresponding Serial Communication Port from Tools→Serial Port
  • The project is ready to be uploaded on the development board.

23 Jul 2012 16:51

More information

01 Jun 2012 12:17
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費(fèi)下載
  2. 0.00 MB  |  1491次下載  |  免費(fèi)
  3. 2單片機(jī)典型實(shí)例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實(shí)例詳細(xì)資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關(guān)電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費(fèi)
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機(jī)和 SG3525的程控開關(guān)電源設(shè)計(jì)
  14. 0.23 MB  |  4次下載  |  免費(fèi)
  15. 8基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
  16. 0.11 MB  |  4次下載  |  免費(fèi)

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費(fèi)
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費(fèi)
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費(fèi)
  7. 4LabView 8.0 專業(yè)版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費(fèi)
  9. 5555集成電路應(yīng)用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費(fèi)
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費(fèi)
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費(fèi)
  15. 8開關(guān)電源設(shè)計(jì)實(shí)例指南
  16. 未知  |  21539次下載  |  免費(fèi)

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費(fèi)
  3. 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
  4. 78.1 MB  |  537793次下載  |  免費(fèi)
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費(fèi)
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費(fèi)
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費(fèi)
  11. 6電路仿真軟件multisim 10.0免費(fèi)下載
  12. 340992  |  191183次下載  |  免費(fèi)
  13. 7十天學(xué)會(huì)AVR單片機(jī)與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費(fèi)
  15. 8proe5.0野火版下載(中文版免費(fèi)下載)
  16. 未知  |  138039次下載  |  免費(fèi)