本文主要介紹的是阻抗匹配,首先介紹了阻抗匹配條件,其次闡述了如何理解阻抗匹配及常見阻抗匹配的方式,最后介紹了pcb阻抗匹配如何計算,具體的跟隨小編一起來了解一下。
阻抗匹配簡介
阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產(chǎn)生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。在高速PCB設(shè)計中,阻抗的匹配與否關(guān)系到信號的質(zhì)量優(yōu)劣。
阻抗匹配條件
?、儇撦d阻抗等于信源內(nèi)阻抗,即它們的模與輻角分別相等,這時在負載阻抗上可以得到無失真的電壓傳輸。
?、谪撦d阻抗等于信源內(nèi)阻抗的共軛值,即它們的模相等而輻角之和為零。這時在負載阻抗上可以得到最大功率。這種匹配條件稱為共軛匹配。如果信源內(nèi)阻抗和負載阻抗均為純阻性,則兩種匹配條件是等同的。
阻抗匹配是指負載阻抗與激勵源內(nèi)部阻抗互相適配,得到最大功率輸出的一種工作狀態(tài)。對于不同特性的電路,匹配條件是不一樣的。在純電阻電路中,當負載電阻等于激勵源內(nèi)阻時,則輸出功率為最大,這種工作狀態(tài)稱為匹配,否則稱為失配。
當激勵源內(nèi)阻抗和負載阻抗含有電抗成份時,為使負載得到最大功率,負載阻抗與內(nèi)阻必須滿足共扼關(guān)系,即電阻成份相等,電抗成份絕對值相等而符號相反。這種匹配條件稱為共扼匹配。
阻抗匹配(Impedance matching)是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。史密夫圖表上。電容或電感與負載串聯(lián)起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?/p>
怎樣理解阻抗匹配
阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。阻抗匹配分為低頻和高頻兩種情況討論。
我們先從直流電壓源驅(qū)動一個負載入手。由于實際的電壓源,總是有內(nèi)阻的,我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯(lián)的模型。假設(shè)負載電阻為R,電源電動勢為U,內(nèi)阻為r,那么我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。負載R上的電壓為:Uo=IR=U*[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。再來計算一下電阻R消耗的功率為:
P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
=U*U*R/[(R-r)*(R-r)+4*R*r]
=U*U/{[(R-r)*(R-r)/R]+4*r}
對于一個給定的信號源,其內(nèi)阻r是固定的,而負載電阻R則是由我們來選擇的。注意式中[(R-r)*(R-r)/R],當R=r時,[(R-r)*(R-r)/R]可取得最小值0,這時負載電阻R上可獲得最大輸出功率Pmax=U*U/(4*r)。即,當負載電阻跟信號源內(nèi)阻相等時,負載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。對于純電阻電路,此結(jié)論同樣適用于低頻電路及高頻電路。當交流電路中含有容性或感性阻抗時,結(jié)論有所改變,就是需要信號源與負載阻抗的的實部相等,虛部互為相反數(shù),這叫做共厄匹配。在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負載之間的情況,因為低頻信號的波長相對于傳輸線來說很長,傳輸線可以看成是“短線”,反射可以不考慮(可以這么理解:因為線短,即使反射回來,跟原信號還是一樣的)。從以上分析我們可以得出結(jié)論:如果我們需要輸出電流大,則選擇小的負載R;如果我們需要輸出電壓大,則選擇大的負載R;如果我們需要輸出功率最大,則選擇跟信號源內(nèi)阻匹配的電阻R。有時阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負載條件下設(shè)計的,如果負載條件改變了,則可能達不到原來的性能,這時我們也會叫做阻抗失配。
在高頻電路中,我們還必須考慮反射的問題。當信號的頻率很高時,則信號的波長就很短,當波長短得跟傳輸線長度可以比擬時,反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特征阻抗跟負載阻抗不匹配(相等)時,在負載端就會產(chǎn)生反射。為什么阻抗不匹配時會產(chǎn)生反射以及特征阻抗的求解方法,牽涉到二階偏微分方程的求解,在這里我們不細說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。傳輸線的特征阻抗(也叫做特性阻抗)是由傳輸線的結(jié)構(gòu)以及材料決定的,而與傳輸線的長度,以及信號的幅度、頻率等均無關(guān)。例如,常用的閉路電視同軸電纜特性阻抗為75歐,而一些射頻設(shè)備上則常用特征阻抗為50歐的同軸電纜。另外還有一種常見的傳輸線是特性阻抗為300歐的扁平平行線,這在農(nóng)村使用的電視天線架上比較常見,用來做八木天線的饋線。因為電視機的射頻輸入端輸入阻抗為75歐,所以300歐的饋線將與其不能匹配。
實際中是如何解決這個問題的呢?不知道大家有沒有留意到,電視機的附件中,有一個300歐到75歐的阻抗轉(zhuǎn)換器(一個塑料包裝的,一端有一個圓形的插頭的那個東東,大概有兩個大拇指那么大的)?它里面其實就是一個傳輸線變壓器,將300歐的阻抗,變換成75歐的,這樣就可以匹配起來了。這里需要強調(diào)一點的是,特性阻抗跟我們通常理解的電阻不是一個概念,它與傳輸線的長度無關(guān),也不能通過使用歐姆表來測量。為了不產(chǎn)生反射,負載阻抗跟傳輸線的特征阻抗應(yīng)該相等,這就是傳輸線的阻抗匹配。如果阻抗不匹配會有什么不良后果呢?如果不匹配,則會形成反射,能量傳遞不過去,降低效率;會在傳輸線上形成駐波(簡單的理解,就是有些地方信號強,有些地方信號弱),導致傳輸線的有效功率容量降低;功率發(fā)射不出去,甚至會損壞發(fā)射設(shè)備。如果是電路板上的高速信號線與負載阻抗不匹配時,會產(chǎn)生震蕩,輻射干擾等。
當阻抗不匹配時,有哪些辦法讓它匹配呢?第一,可以考慮使用變壓器來做阻抗轉(zhuǎn)換,就像上面所說的電視機中的那個例子那樣。第二,可以考慮使用串聯(lián)/并聯(lián)電容或電感的辦法,這在調(diào)試射頻電路時常使用。第三,可以考慮使用串聯(lián)/并聯(lián)電阻的辦法。一些驅(qū)動器的阻抗比較低,可以串聯(lián)一個合適的電阻來跟傳輸線匹配,例如高速信號線,有時會串聯(lián)一個幾十歐的電阻。而一些接收器的輸入阻抗則比較高,可以使用并聯(lián)電阻的方法,來跟傳輸線匹配,例如,485總線接收器,常在數(shù)據(jù)線終端并聯(lián)120歐的匹配電阻。
為了幫助大家理解阻抗不匹配時的反射問題,我來舉兩個例子:假設(shè)你在練習拳擊——打沙包。如果是一個重量合適的、硬度合適的沙包,你打上去會感覺很舒服。但是,如果哪一天我把沙包做了手腳,例如,里面換成了鐵沙,你還是用以前的力打上去,你的手可能就會受不了了——這就是負載過重的情況,會產(chǎn)生很大的反彈力。相反,如果我把里面換成了很輕很輕的東西,你一出拳,則可能會撲空,手也可能會受不了——這就是負載過輕的情況。另一個例子,不知道大家有沒有過這樣的經(jīng)歷:就是看不清樓梯時上/下樓梯,當你以為還有樓梯時,就會出現(xiàn)“負載不匹配”這樣的感覺了。當然,也許這樣的例子不太恰當,但我們可以拿它來理解負載不匹配時的反射情況。
常見阻抗匹配的方式
1、串聯(lián)終端匹配
在信號源端阻抗低于傳輸線特征阻抗的條件下,在信號的源端和傳輸線之間串接一個電阻R,使源端的輸出阻抗與傳輸線的特征阻抗相匹配,抑制從負載端反射回來的信號發(fā)生再次反射。
匹配電阻選擇原則:匹配電阻值與驅(qū)動器的輸出阻抗之和等于傳輸線的特征阻抗。常見的CMOS和TTL驅(qū)動器,其輸出阻抗會隨信號的電平大小變化而變化。因此,對TTL或CMOS電路來說,不可能有十分正確的匹配電阻,只能折中考慮。鏈狀拓撲結(jié)構(gòu)的信號網(wǎng)路不適合使用串聯(lián)終端匹配,所有的負載必須接到傳輸線的末端。
串聯(lián)匹配是最常用的終端匹配方法。它的優(yōu)點是功耗小,不會給驅(qū)動器帶來額外的直流負載,也不會在信號和地之間引入額外的阻抗,而且只需要一個電阻元件。
常見應(yīng)用:一般的CMOS、TTL電路的阻抗匹配。USB信號也采樣這種方法做阻抗匹配。
2、并聯(lián)終端匹配
在信號源端阻抗很小的情況下,通過增加并聯(lián)電阻使負載端輸入阻抗與傳輸線的特征阻抗相匹配,達到消除負載端反射的目的。實現(xiàn)形式分為單電阻和雙電阻兩種形式。
匹配電阻選擇原則:在芯片的輸入阻抗很高的情況下,對單電阻形式來說,負載端的并聯(lián)電阻值必須與傳輸線的特征阻抗相近或相等;對雙電阻形式來說,每個并聯(lián)電阻值為傳輸線特征阻抗的兩倍。
并聯(lián)終端匹配優(yōu)點是簡單易行,顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的占空比緊密相關(guān);雙電阻方式則無論信號是高電平還是低電平都有直流功耗,但電流比單電阻方式少一半。
常見應(yīng)用:以高速信號應(yīng)用較多。
?。?)DDR、DDR2等SSTL驅(qū)動器。采用單電阻形式,并聯(lián)到VTT(一般為IOVDD的一半)。其中DDR2數(shù)據(jù)信號的并聯(lián)匹配電阻是內(nèi)置在芯片中的。
?。?)TMDS等高速串行數(shù)據(jù)接口。采用單電阻形式,在接收設(shè)備端并聯(lián)到IOVDD,單端阻抗為50歐姆(差分對間為100歐姆)。
pcb阻抗匹配如何計算
在我們畫四層板、六層板或者更高層板的時候,必須考慮一個問題——導線的特性阻抗和器件或信號所要求的特性阻抗是否一致,是否匹配。所以在PCB設(shè)計中我們就必須考慮到阻抗匹配的概念,然后對設(shè)計的走線線寬、線間距進行計算。
首先我們來了解一下PCB生產(chǎn)板材:芯板、PP板,下表列出了其厚度與介電常數(shù)之間的關(guān)系。
下面以一個1.6mm板厚、板材為FR4的6層板為案例來分析疊層以及阻抗。
我們設(shè)計層壓厚度的時候一般是層壓的厚度要比成品的厚度小0.1mm左右(考慮到銅厚和殘銅率的問題),下面是我們常用的一個6層層壓結(jié)構(gòu):
層壓厚度=0.07*2+0.14*2+0.195*2+0.7=1.51mm(比要求的1.6mm板厚少0.1mm)
注意層壓結(jié)構(gòu)是上下對稱的,以上這種6層層壓結(jié)構(gòu)也叫做假8層。
以下就是根據(jù)阻抗大小,利用軟件Si9000,來計算走線線寬與線間距。
阻抗一般規(guī)律:介質(zhì)厚度、線距越大,阻抗值越大;介電常數(shù)、銅厚、線寬越大,阻抗越小。通常利用這個規(guī)律進行微調(diào),使得最終的計算結(jié)果接近預(yù)定的阻抗值。
1.1)在L1/L6上,要求阻抗值50歐姆,單走線:線寬5.5mil
以上單位是mil
首先是選擇模型,H1為表面到參考層的距離,即L1到L2,0.07mm,上圖單位是mil;Er1是L1、L2之間PP板的介電常數(shù),1080,3.65;W1為下線寬,W2為上線寬,板子腐蝕是從上到下的,不是絕對的平整,所以業(yè)界規(guī)定,W1是走線寬度,W2比W1短0.5mil;T1是表層的銅厚,HOZ,0.6mil。以上數(shù)字填進去之后,點擊“More”上方的Calculate,可以得到Z0為50.78,在10%以內(nèi),符合要求。
1.2)在L1/L6上,要求阻抗值90歐姆,差分走線:線寬6mil,線間距6mil
圖中的S1表示差分線間距。
1.3)在L1/L6上,要求阻抗值100歐姆,差分走線:線寬5.1mil,線間距9mil
2.1)在L3/L4上,要求阻抗值50歐姆,單走線:線寬5.8mil
模型選擇:隔一個參考層比較近,隔另一個參考層比較遠。比如在L3上,參考層分別為L2、L5。
以上單位是mm
我們可以這么理解,在L3上走線,距離L2的厚度就是H3=0.14mm,介電常數(shù)3.95;距離L4的厚度就是H2=0.195+0.7+0.195=1.09mm,平均介電常數(shù)4.2;距離L5的厚度就是H1=0.14mm,介電常數(shù)3.95。然后將單位換算成mil,走線寬度W1=5.8mil,W2=5.3mil,L3的銅厚T1=1OZ=1.2mil,計算可得此時的阻抗為50歐姆。
2.2)在L3/L4上,要求阻抗值90歐姆,差分走線:線寬5.5mil,線間距9mil
2.3)在L3/L4上,要求阻抗值100歐姆,差分走線:線寬4.3mil,線間距9mil
3)最后,我們將上面計算的線寬、線間距統(tǒng)一用一個表格列出來: