0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

傅里葉變換和拉普拉斯變換與Z變換到底有什么的聯(lián)系和作用

Wildesbeast ? 來(lái)源:電子工程專輯 ? 作者:電子工程專輯 ? 2021-02-15 11:59 ? 次閱讀

在知乎上看到一個(gè)問(wèn)題,傅里葉變換、拉普拉斯變換、Z 變換的聯(lián)系是什么?為什么要進(jìn)行這些變換?我覺(jué)得這是一個(gè)非常好的問(wèn)題,貌似一下子也回答不上來(lái),所以整理學(xué)習(xí)并分享一下。

什么是數(shù)學(xué)變換?

要理解這些變換,首先需要理解什么是數(shù)學(xué)變換!如果不理解什么是數(shù)學(xué)變換的概念,那么其他的概念我覺(jué)得也沒(méi)有理解。

數(shù)學(xué)變換是指數(shù)學(xué)函數(shù)從原向量空間在自身函數(shù)空間變換,或映射到另一個(gè)函數(shù)空間,或?qū)τ诩蟈到其自身(比如線性變換)或從X到另一個(gè)集合Y的可逆變換函數(shù)。比如:

旋轉(zhuǎn)變換(Rotation)

5bab43f379f34b50a74da0c2a44f2184.png

鏡像變換(Reflection)

f5111b7874d849bda567051fc150f924.png

平移變換( Translation )

4f9c22ca43e0499ebdd8f95a297a5215.png

數(shù)學(xué)中還有很多其他的數(shù)學(xué)變換,其本質(zhì)都可以看成是將函數(shù)f(x)利用變換因子進(jìn)行的一種數(shù)學(xué)映射,其變換結(jié)果是函數(shù)的自變量有可能還是原來(lái)的幾何向量空間,或許會(huì)變成其他的幾何向量空間,比如傅立葉變換就從時(shí)域變換為頻域。

而傅立葉變換和拉普拉斯變換的本質(zhì)都是對(duì)連續(xù)函數(shù)的一種積分變換,那么什么是積分變換呢?

什么是積分變換?

積分變換通過(guò)對(duì)原函數(shù)對(duì)映射函數(shù)空間自變量在特定區(qū)間進(jìn)行積分運(yùn)算,將函數(shù)從其原始函數(shù)空間映射到另一個(gè)函數(shù)空間。這樣一來(lái),其中原始函數(shù)的某些屬性在映射函數(shù)空間可能比原始函數(shù)空間更容易表征或分析。通??梢允褂媚孀儞Q將變換后的函數(shù)映射回到原函數(shù)空間,這樣的變換稱為可逆變換。

假定對(duì)于函數(shù)為自變量t的函數(shù)f(t),通常積分變換都具有如下類似的范式:

529a109a030940149017cb3a92219474.png

函數(shù)f(t)是該變換的輸入,(Tf)(u)為變換的輸出,因此積分變換一般也稱為一種特定的數(shù)學(xué)運(yùn)算符。而函數(shù)K(t,u)稱為積分核函數(shù)(kernel function)。

9583b4c37b384f9fa871ecb6c5e3e7f1.png

這里有一個(gè)對(duì)稱核函數(shù)的概念,這是什么意思呢?就是將函數(shù)K的兩個(gè)自變量交換位置仍然相等:

有的變換可逆,這是什么概念呢?就是變換后通過(guò)逆變換,還能還原!

bcf378e84d6f4f8cbaba8ce6bf05aec6.png

觀察正變換與逆變換,你會(huì)發(fā)現(xiàn):

核函數(shù)剛好兩個(gè)自變量交換位置

正變換是對(duì)原函數(shù)f(t)在時(shí)間維度上進(jìn)行積分

逆變換是在變換后的函數(shù)在u維度上進(jìn)行積分

什么是傅立葉級(jí)數(shù)?

在談傅立葉變換之前,先談?wù)劯盗⑷~級(jí)數(shù)會(huì)更容易理解傅立葉變換。在數(shù)學(xué)中,傅里葉級(jí)數(shù)(Fourier series)是把類似波的函數(shù)表示成簡(jiǎn)單正弦波的方式。更正式的說(shuō)法是,它能將任何周期性函數(shù)或周期性信號(hào)分解成一個(gè)(可能由無(wú)窮個(gè)頻率分量組成的)簡(jiǎn)單振蕩函數(shù)的集合,即正弦函數(shù)和余弦函數(shù)(或者,等價(jià)地使用復(fù)指數(shù)),從數(shù)學(xué)的定義來(lái)看:

設(shè)f(t)是一周期信號(hào),假定其周期為T。若f(t)在一個(gè)周期的能量是有限的,就是:

則,可以將f(t)展開(kāi)為傅立葉級(jí)數(shù)。怎么展開(kāi)呢?計(jì)算如下:

d88af7845e524491aebc2ed210426c0d.png

而傅立葉級(jí)數(shù)的系數(shù)由下式計(jì)算:

e9e5960465af42f39b771704b78795cd.png

對(duì)于f(t),利用歐拉公式還可以寫(xiě)成正弦函數(shù)與余弦函數(shù)的和,這里就不寫(xiě)了。歐拉公式如下:

公式中的k表示第k次諧波,這是個(gè)什么概念呢?不容易理解,看下對(duì)于一個(gè)方波的前4次諧波 合成動(dòng)圖就比較好理解了。這里合成的概念是指時(shí)域上的疊加的概念,圖片來(lái)源wikipedia

89ea172b707744a9bbc9b38d3c89e27f.gif

2728d890613748279c4529fd76b5d997.png

從上圖可以直觀看出,周期性方波,可以看成多次諧波的線性疊加,其幅度譜圖,是一根根離散的譜線,且幅度值越來(lái)越低,從這個(gè)角度可以看出高次諧波的分量,占比越來(lái)越小。其譜線的位置為:

第一根為:

第二根為:

第n根為:

其譜線的間隔為

應(yīng)用:這里可以聯(lián)想到我們的電子系統(tǒng)中的時(shí)鐘信號(hào),做硬件的朋友或有經(jīng)驗(yàn),在做EMC的輻射測(cè)試時(shí),發(fā)現(xiàn)產(chǎn)品電路板在某些頻點(diǎn)超標(biāo),有經(jīng)驗(yàn)的同學(xué)會(huì)很快定位到輻射源。其實(shí)這里大概率就是因?yàn)橹芷谛缘臅r(shí)鐘信號(hào)造成的,從頻率的角度可以看成是其基頻的多次諧波的線性疊加,而某個(gè)諧波分量在電路線路尺寸滿足輻射條件時(shí),就從電路板上脫逸而出,變?yōu)殡姶挪芰肯蚩臻g傳播。所以反向去查該頻率可能對(duì)應(yīng)的周期性時(shí)鐘信號(hào)的基頻就能很快定位到輻射源,從而解決問(wèn)題。

說(shuō)到傅立葉級(jí)數(shù)是周期性信號(hào)可以用傅立葉級(jí)數(shù)展開(kāi),那么是不是任一周期性信號(hào)都可以進(jìn)行傅立葉級(jí)數(shù)展開(kāi)呢?答案是否定的,必須滿足著名的 狄利克雷(Dirichlet)條件:

在一周期內(nèi),如果有間斷點(diǎn)存在,則間斷點(diǎn)的數(shù)目需要是有限個(gè)數(shù)

在一周期內(nèi),極大值和極小值的數(shù)目是有限個(gè)數(shù)的

在一周期內(nèi),信號(hào)或者函數(shù)是絕對(duì)可積分的。見(jiàn)前文公式。

什么是傅立葉變換?

前面說(shuō)了傅立葉級(jí)數(shù),接下來(lái)再看傅立葉變換。傅立葉變換之所以稱為傅立葉變換,是由于1822年,法國(guó)數(shù)學(xué)家傅立葉(J.Fourier) 在研究熱傳導(dǎo)理論時(shí)首次證明了將周期函數(shù)展開(kāi)為傅立葉級(jí)數(shù)的理論,并進(jìn)而不斷發(fā)展成為一個(gè)有力的科研分析工具。

假定周期性信號(hào)周期T逐漸變大,則譜線間間隔將逐漸變小,如果外推周期T無(wú)限放大,變成無(wú)窮大,則信號(hào)或者函數(shù)就變成非周期信號(hào)或函數(shù)了,此時(shí)譜線就變成連續(xù)的了,而非一根一根離散的譜線!那么傅立葉變換正是這種一般性的數(shù)學(xué)定義:

對(duì)于連續(xù)時(shí)間信號(hào)f(t),若f(t)在時(shí)間維度上可積分,(實(shí)際上并不一定是時(shí)間t維度,這里可以是任意維度,只需在對(duì)應(yīng)維度空間可積分即可),即:

那么,x(t)的傅立葉變換存在,且其計(jì)算式為:

8e1264801b684dfc9fca3ee8e4c448c4.png

其反變換為:

496ee71e5e574e7484ac8272127a725e.png

前文說(shuō)傅立葉變換本質(zhì)上也是一種連續(xù)函數(shù)的積分變換,那么從上面公式,可以看出傅立葉變換的核函數(shù)為:

其核函數(shù)的兩個(gè)自變量為t, ,對(duì)于 一般稱為角速度(可以形象的理解為旋轉(zhuǎn)運(yùn)動(dòng)的快慢),是表征頻率空間的。

上面這兩個(gè)公式是啥意思呢?在度量空間可積可以理解成其在度量空間能量有限,也即對(duì)其自變量積分(相當(dāng)于求面積)是一個(gè)確定值,那么這樣的函數(shù)或者信號(hào)就可以進(jìn)行傅立葉變換展開(kāi),展開(kāi)得到的 就變成是頻域的函數(shù)了,如果對(duì)頻率 將函數(shù)值繪制出曲線就是我們所說(shuō)的頻譜圖,而其逆變換就比較好理解了,如果我們知道一個(gè)信號(hào)或者函數(shù)譜密度函數(shù) ,就可以對(duì)應(yīng)還原出其時(shí)域的函數(shù),也能繪制出時(shí)域的波形圖。

傅立葉變換公式,從理解的角度,可以看成無(wú)限多無(wú)窮小的能量之和,而傅立葉級(jí)數(shù)也是各諧波分量的加和,所不同的是,前者相對(duì)于頻率變量是連續(xù)的,而后者相對(duì)于頻率則是離散的!

ba221cecda9c4ccaa62adf1f02a3b99f.gif

當(dāng)然,本文限定討論時(shí)域信號(hào)是因?yàn)槲覀冸娮酉到y(tǒng)中的應(yīng)用最為普遍的就是一個(gè)時(shí)域信號(hào)。推而廣之,其他的多維度信號(hào)也能利用上面定義進(jìn)行推廣,同樣在多維空間信號(hào)也非常有應(yīng)用價(jià)值,比如2維圖像處理、3維圖像重建等等。

傅立葉級(jí)數(shù)與變換的區(qū)別?

傅立葉級(jí)數(shù)對(duì)應(yīng)的是周期信號(hào),而傅立葉變換則對(duì)應(yīng)的是一個(gè)時(shí)間連續(xù)可積信號(hào)(不一定是周期信號(hào))

傅立葉級(jí)數(shù)要求信號(hào)在一個(gè)周期內(nèi)能量有限,而后者則要求在整個(gè)區(qū)間能量有限

傅立葉級(jí)數(shù)的對(duì)應(yīng) 是離散的,而傅立葉變換則對(duì)應(yīng) 是連續(xù)的。

故而,兩者的物理含義不同,且其量綱也是不同的, 代表周期信號(hào)的第k次諧波幅度的大小,而 則是頻譜密度的概念。所以答案是這兩者從本質(zhì)上不是一個(gè)概念,傅立葉級(jí)數(shù)是周期信號(hào)的另一種時(shí)域的表達(dá)方式,也就是正交級(jí)數(shù),它是不同的頻率的波形的時(shí)域疊加。而傅立葉變換則是完全的頻域分析,傅里葉級(jí)數(shù)適用于對(duì)周期性現(xiàn)象做數(shù)學(xué)上的分析,傅里葉變換可以看作傅里葉級(jí)數(shù)的極限形式,也可以看作是對(duì)周期現(xiàn)象進(jìn)行數(shù)學(xué)上的分析,同時(shí)也適用于非周期性現(xiàn)象的分析。

什么是拉普拉斯變換?

1814年法國(guó)數(shù)學(xué)家Pierre-Simon Laplace在研究概率論中給出了拉普拉斯的可靠數(shù)學(xué)依據(jù),從而發(fā)展成拉普拉斯變換理論。對(duì)于函數(shù)f(t)我們知道其傅立葉變換為:

f375e63141ae4d818baa72d77db09b5f.png

那么如果對(duì)于函數(shù) 其傅立葉變換為:

57ae7da21e98423598336ba7b0f84d9d.png

上面的公式整理一下:

968d942e6b084b42a85aa16c165edfaf.png

令 ,則上面的變換

從前文我們知道,拉普拉斯本質(zhì)上也是一種積分變換,那么上面公式,將 看成積分變換的核函數(shù),則其變換 核函數(shù)為:

上面引入的因子 ,對(duì)于函數(shù) 函數(shù)將變得更容易收斂,傅立葉變換的絕對(duì)可積分的限制條件也就更容易滿足了。拉普拉斯變換存在的條件為:

傅立葉拉氏變換聯(lián)系區(qū)別

所以傅立葉變換與拉普拉斯變換的聯(lián)系就比較容易聯(lián)系了。

d82d168beda14a9cac6eed25e520203a.png

05d0c28c60694eb3bd1473f45e55f184.png

拉普拉斯變換,將原函數(shù)從時(shí)間維度(不一定是時(shí)間維度,只是方便理解本文以常見(jiàn)的時(shí)間維度信號(hào)進(jìn)行描述),映射為復(fù)平面

傅立葉變換是拉普拉斯變換的特例,也即變換核函數(shù) 時(shí),拉普拉斯變換就變成傅立葉變換了。相當(dāng)于只取虛部,實(shí)部為0.

傅立葉變換是從原維度變換為頻率維度,對(duì)于信號(hào)處理而言相當(dāng)于將時(shí)域信號(hào)變換為頻域進(jìn)行分析,為信號(hào)處理提供了強(qiáng)大的數(shù)學(xué)理論基礎(chǔ)及工具。

拉普拉斯變換,將原維度變換為復(fù)頻域,在電子電路分析以及控制理論中,為建立系統(tǒng)的數(shù)學(xué)描述提供了強(qiáng)大的數(shù)學(xué)理論基礎(chǔ),學(xué)過(guò)控制理論的一天到晚都與傳遞函數(shù)打交道,其本質(zhì)就是拉普拉斯變換對(duì)系統(tǒng)的一種數(shù)學(xué)建模描述。為分析系統(tǒng)的穩(wěn)定性、可控性提供了數(shù)學(xué)工具。

什么是Z變換?

Z變換本質(zhì)上是拉普拉斯變換的離散形式。也稱為Fisher-Z變換。對(duì)于連續(xù)信號(hào)進(jìn)行抽樣變換就得到了原函數(shù)的離散序列:

3f3db2b284004653be101328ae093966.png

其中T為采樣周期, 信號(hào)與系統(tǒng)中稱為沖激抽樣。其實(shí)說(shuō)人話,就是將連續(xù)信號(hào),按等間隔理想的轉(zhuǎn)為抽取離散序列樣本??聪聢D就明白了,在電子系統(tǒng)中常用AD轉(zhuǎn)換器進(jìn)行實(shí)現(xiàn)。

79425b5bbf3b4ec2883b9159dfa500ba.png

對(duì)上式進(jìn)行拉普拉斯變換:

2ed1c291a09048dfa61f90df6aeb51cc.png

該公式利用沖激函數(shù)的抽樣特性,可簡(jiǎn)化為:

78519e5208ae426e8580b4c5d4951dd8.png

引入 ,引入新的自變量Z,則上面的公式就變成這樣了:

這就是Z變換了,從上面的過(guò)程描述就知道Z變換與拉普拉斯變換的關(guān)系了。因此兩者的聯(lián)系也就是Z變換是拉布拉斯變換的離散形式。

04d0f67afc774837a71670592a9ed041.png

那么Z變換的意義在于什么呢?在數(shù)字信號(hào)處理以及數(shù)字控制系統(tǒng)中,Z變換提供了數(shù)學(xué)基礎(chǔ)。利用Z變換很快就能將一個(gè)傳遞函數(shù)描述成差分方程形式,這就為編程實(shí)現(xiàn)提供了數(shù)學(xué)依據(jù),比如一個(gè)數(shù)字濾波器知道其Z變換形式,寫(xiě)代碼就是分分鐘的事情了,同樣知道一個(gè)控制算法的Z變換形式,同樣編代碼也是水到渠成的事情。

這里談到Z變換的離散形式,那么這里也提一句,傅立葉變換數(shù)字落地,也即離散形式是離散傅立葉變換DFT(Discrete Fourier Transform),而大家所熟知的快速傅立葉變換FFT(Fast Fourier Transform)則是DFT的高效率實(shí)現(xiàn)。

總結(jié)一下

e6aa12c07099469ea8df322a9663a350.png

要理解三種變換的聯(lián)系區(qū)別,首先要理解什么是數(shù)學(xué)變換,什么是積分變換。傅立葉變換以及拉普拉斯變換本質(zhì)上都是連續(xù)函數(shù)的積分變換,而傅立葉變換是拉普拉斯變換的特殊形式,而Z變換是拉普拉斯變換的離散形式。每種變換都有其應(yīng)用價(jià)值,傅立葉變換在信號(hào)處理的頻域分析中提供了強(qiáng)大的數(shù)學(xué)工具,而拉普拉斯變換在電子學(xué)、控制工程、航空航天等領(lǐng)域提供了建模、分析的數(shù)學(xué)分析工具;Z變換則將這些變換進(jìn)而落地為數(shù)字實(shí)現(xiàn)提供數(shù)學(xué)理論依據(jù)。DFT為FFT的離散化形式,而FFT是DFT的算法優(yōu)化實(shí)現(xiàn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FFT
    FFT
    +關(guān)注

    關(guān)注

    15

    文章

    433

    瀏覽量

    59256
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4277

    瀏覽量

    62323
  • 傅里葉變換
    +關(guān)注

    關(guān)注

    6

    文章

    429

    瀏覽量

    42540
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    拉普拉斯變換傅里葉變換的關(guān)系.ppt

    拉普拉斯變換傅里葉變換的關(guān)系.ppt拉普拉斯變換傅里葉變換的關(guān)系拉氏
    發(fā)表于 09-16 08:42

    拉普拉斯變換在現(xiàn)代控制領(lǐng)域哪些應(yīng)用?

    什么是拉普拉斯變換?拉普拉斯變換在現(xiàn)代控制領(lǐng)域哪些應(yīng)用?
    發(fā)表于 04-29 06:30

    拉普拉斯變換課件教案

    拉普拉斯變換教案:§13-1 拉普拉斯變換的定義§13-2 拉普拉斯變換的基本性質(zhì)§13-3
    發(fā)表于 07-09 11:37 ?0次下載

    z變換拉普拉斯變換的關(guān)系

    z變換拉普拉斯變換的關(guān)系:一.z平面與s平面的映射關(guān)系二.z
    發(fā)表于 09-30 19:40 ?0次下載

    什么是拉普拉斯變換

    什么是拉普拉斯變換 拉普拉斯變換拉普拉斯變換(英文:Laplace Transform),是
    發(fā)表于 07-08 11:42 ?6336次閱讀
    什么是<b class='flag-5'>拉普拉斯</b><b class='flag-5'>變換</b>

    拉普拉斯變換的基本定理

    拉普拉斯變換的基本定理 本節(jié)介紹拉普拉斯變換(也稱為拉氏變換)的基本性質(zhì),了解掌握了這些性質(zhì),可以更加方便地求解各種拉普
    發(fā)表于 07-27 11:43 ?2.5w次閱讀

    拉普拉斯變換

    拉普拉斯變換 利用拉普拉斯變換的定義式(9-1-3),將象函數(shù)代入式
    發(fā)表于 07-27 11:44 ?5861次閱讀
    <b class='flag-5'>拉普拉斯</b>反<b class='flag-5'>變換</b>

    拉普拉斯變換及其應(yīng)用_elecfans.com

    拉普拉斯變換及其應(yīng)用拉普拉斯變換及其應(yīng)用拉普拉斯變換及其應(yīng)用
    發(fā)表于 10-28 11:19 ?33次下載

    傅里葉變換拉普拉斯變換的物理解釋及區(qū)別pdf文檔資料【下載】

    傅里葉變換拉普拉斯變換的物理解釋及區(qū)別pdf文檔資料下載
    發(fā)表于 12-19 17:22 ?4次下載

    傅里葉變換如何推換出拉普拉斯變換?

    從傅里葉級(jí)數(shù)、傅里葉變換推出拉普拉斯變換。
    的頭像 發(fā)表于 06-23 16:25 ?7174次閱讀
    從<b class='flag-5'>傅里葉變換</b>如何推換出<b class='flag-5'>拉普拉斯</b><b class='flag-5'>變換</b>?

    傅里葉變換、拉普拉斯變換Z變換剖析

    傅里葉變化只能對(duì)能量有限的信號(hào)進(jìn)行變換(也就是可以收斂的信號(hào)),無(wú)法對(duì)能量無(wú)限的信號(hào)進(jìn)行變換(無(wú)法收斂),因此,拉普拉斯應(yīng)運(yùn)而生,在原先的傅里葉變換公式中乘以一個(gè)衰減因子,使得無(wú)限能量
    的頭像 發(fā)表于 11-28 11:00 ?2584次閱讀

    傅里葉變換拉普拉斯變換的區(qū)別聯(lián)系

    傅里葉變換拉普拉斯變換的區(qū)別聯(lián)系 傅里葉變換拉普拉斯變換
    的頭像 發(fā)表于 09-07 16:29 ?3322次閱讀

    傅里葉變換拉普拉斯變換z變換的區(qū)別聯(lián)系

    (s)域表示;z變換用于將一個(gè)離散時(shí)間信號(hào)轉(zhuǎn)換為z平面域表示。雖然它們各自不同的應(yīng)用領(lǐng)域,但它們之間一些
    的頭像 發(fā)表于 09-07 16:38 ?2449次閱讀

    傅里葉變換拉普拉斯變換聯(lián)系解讀

    傅里葉變換拉普拉斯變換聯(lián)系解讀 傅里葉變換拉普拉斯變換
    的頭像 發(fā)表于 09-07 17:04 ?2432次閱讀

    傅里葉變換拉普拉斯變換的關(guān)系是什么

    傅里葉變換拉普拉斯變換是兩種重要的數(shù)學(xué)工具,常用于信號(hào)分析和系統(tǒng)理論領(lǐng)域。雖然它們?cè)跀?shù)學(xué)定義和應(yīng)用上有所差異,但它們之間存在緊密的聯(lián)系和相互依存的關(guān)系。 首先,我們先介紹一下
    的頭像 發(fā)表于 02-18 15:45 ?1551次閱讀