0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

給Java同仁單點(diǎn)的AI"開胃菜"--搭建一個(gè)自己的本地問答系統(tǒng)

京東云 ? 來源:jf_75140285 ? 作者:jf_75140285 ? 2024-09-27 14:40 ? 次閱讀

這是我參與創(chuàng)作者計(jì)劃的第1篇文章

大家好,因?yàn)閷?duì)AI大模型很感興趣,相信很多兄弟們跟我一樣,所以最近花時(shí)間了解了一些,有一些總結(jié) 分享給大家,希望對(duì)各位有所幫助;

本文主要是目標(biāo)是 講解如何在本地 搭建一個(gè)簡(jiǎn)易的AI問答系統(tǒng),主要用java來實(shí)現(xiàn),也有一些簡(jiǎn)單的python知識(shí);網(wǎng)上很多例子都是以 ChatGPT來講解的,但因?yàn)樗鼘?duì)國內(nèi)訪問有限制,OpeAi連接太麻煩,又要虛擬賬號(hào)注冊(cè)賬號(hào)啥的,第一步就勸退了,所以選擇了 llama和qwen替代,但是原理都是一樣的;

?

相關(guān)概念了解:

(一)大語言模型 LLM

大型語言模型(LLM,Large Language Models),是近年來自然語言處理(NLP)領(lǐng)域的重要進(jìn)展。這些模型由于其龐大的規(guī)模和復(fù)雜性,在處理和生成自然語言方面展現(xiàn)了前所未有的能力。

?

關(guān)于LLM的一些關(guān)鍵點(diǎn):

1.定義

?大模型通常指的是擁有大量參數(shù)深度學(xué)習(xí)模型,這些模型可能包含數(shù)十億至數(shù)萬億的參數(shù)。

?LLM是大模型的一個(gè)子類,專門設(shè)計(jì)用于處理和理解自然語言,它們能夠模仿人類語言的生成和理解過程。

2.架構(gòu)

?LLM通?;赥ransformer架構(gòu),這是一種使用自注意力機(jī)制(self-attention mechanism)的序列模型,它由多個(gè)編碼器和解碼器層組成,每個(gè)層包含多頭自注意力機(jī)制和前饋神經(jīng)網(wǎng)絡(luò)

3.訓(xùn)練

?這些模型在大規(guī)模文本數(shù)據(jù)集上進(jìn)行訓(xùn)練,這使得它們能夠?qū)W習(xí)到語言的復(fù)雜結(jié)構(gòu),包括語法、語義、上下文關(guān)系等。

?訓(xùn)練過程通常涉及大量的計(jì)算資源,包括GPU集群和海量的數(shù)據(jù)存儲(chǔ)。

4.應(yīng)用

?LLM可以應(yīng)用于各種自然語言處理任務(wù),包括但不限于文本生成、問答、翻譯、摘要、對(duì)話系統(tǒng)等。

?它們還展示了在few-shot和zero-shot學(xué)習(xí)場(chǎng)景下的能力,即在少量或沒有額外訓(xùn)練數(shù)據(jù)的情況下,模型能夠理解和執(zhí)行新任務(wù)。

5.發(fā)展趨勢(shì)

?學(xué)術(shù)研究和工業(yè)界都在探索LLM的邊界,包括如何更有效地訓(xùn)練這些模型,以及如何使它們?cè)诓煌I(lǐng)域和任務(wù)中更具適應(yīng)性。

?開源和閉源模型的競(jìng)爭(zhēng)也在加劇,推動(dòng)了模型的持續(xù)創(chuàng)新和改進(jìn)。

6.學(xué)習(xí)路徑

?對(duì)于那些希望深入了解LLM的人來說,可以從學(xué)習(xí)基本的Transformer模型開始,然后逐漸深入到更復(fù)雜的模型,如GPT系列、BERT、LLaMA、Alpaca等,國內(nèi)的有 qwen(通義千問)、文心一言、訊飛星火、華為盤古、言犀大模型(ChatJd)等 。

7.社區(qū)資源

?Hugging Face等平臺(tái)提供了大量的開源模型和工具,可以幫助研究人員和開發(fā)者快速上手和應(yīng)用LLM。

LLM的出現(xiàn)標(biāo)志著NLP領(lǐng)域的一個(gè)新時(shí)代,它們不僅在學(xué)術(shù)研究中產(chǎn)生了深遠(yuǎn)的影響,也在商業(yè)應(yīng)用中展現(xiàn)出了巨大的潛力。

?

(二)Embedding

在自然語言處理(NLP)和機(jī)器學(xué)習(xí)領(lǐng)域中,"embedding" 是一種將文本數(shù)據(jù)轉(zhuǎn)換成數(shù)值向量的技術(shù)。這種技術(shù)將單詞、短語、句子甚至文檔映射到多維空間中的點(diǎn),使得這些點(diǎn)在數(shù)學(xué)上能夠表示它們?cè)谡Z義上的相似性或差異。

?

Embeddings 可以由預(yù)訓(xùn)練模型生成,也可以在特定任務(wù)中訓(xùn)練得到。常見的 embedding 方法包括:

1. Word2Vec:由 Google 提出,通過上下文預(yù)測(cè)目標(biāo)詞(CBOW)或通過目標(biāo)詞預(yù)測(cè)上下文(Skip-gram)來訓(xùn)練詞向量。

2. GloVe:全球向量(Global Vectors for Word Representation),通過統(tǒng)計(jì)詞共現(xiàn)矩陣來優(yōu)化詞向量。

3. FastText:Facebook 研究院提出的一種方法,它基于詞 n-gram 來構(gòu)建詞向量,適用于稀少詞和未見過的詞。

4. BERT:基于 Transformer 架構(gòu)的預(yù)訓(xùn)練模型,可以生成上下文相關(guān)的詞嵌入,即“動(dòng)態(tài)”詞嵌入。

5. ELMo:利用雙向 LSTM 語言模型生成的詞嵌入,同樣考慮了上下文信息

6. Sentence Transformers:這是 BERT 的一種變體,專門設(shè)計(jì)用于生成句子級(jí)別的嵌入。

?

Embeddings 的主要優(yōu)點(diǎn)在于它們能夠捕捉詞匯之間的復(fù)雜關(guān)系,如同義詞、反義詞以及詞義的細(xì)微差別。此外,它們還能夠處理多義詞問題,即一個(gè)詞在不同上下文中可能有不同的含義。

?

在實(shí)際應(yīng)用中,embeddings 被廣泛用于多種 NLP 任務(wù),如文本分類、情感分析、命名實(shí)體識(shí)別、機(jī)器翻譯、問答系統(tǒng)等。通過使用 embeddings,機(jī)器學(xué)習(xí)模型能夠理解和處理自然語言數(shù)據(jù),從而做出更加準(zhǔn)確和有意義的預(yù)測(cè)或決策。

?

(三)向量數(shù)據(jù)庫

向量數(shù)據(jù)庫是一種專門設(shè)計(jì)用于存儲(chǔ)和查詢高維向量數(shù)據(jù)的數(shù)據(jù)庫系統(tǒng)。這種類型的數(shù)據(jù)庫在處理非結(jié)構(gòu)化數(shù)據(jù),如圖像、文本、音頻視頻的高效查詢和相似性搜索方面表現(xiàn)出色。與傳統(tǒng)的數(shù)據(jù)庫管理系統(tǒng)(DBMS)不同,向量數(shù)據(jù)庫優(yōu)化了對(duì)高維空間中向量的存儲(chǔ)、索引和檢索操作。

以下是向量數(shù)據(jù)庫的一些關(guān)鍵特點(diǎn)和功能:

1.高維向量存儲(chǔ): 向量數(shù)據(jù)庫能夠高效地存儲(chǔ)和管理大量的高維向量數(shù)據(jù),這些向量通常是由深度學(xué)習(xí)模型(如BERT、ResNet等)從原始數(shù)據(jù)中提取的特征。

2.相似性搜索: 它們提供了快速的近似最近鄰(Approximate Nearest Neighbor, ANN)搜索,能夠在高維空間中找到與查詢向量最相似的向量集合。

3.向量索引: 使用特殊的數(shù)據(jù)結(jié)構(gòu),如樹形結(jié)構(gòu)(如KD樹)、哈希表、圖結(jié)構(gòu)或量化方法,以加速向量的檢索過程。

4.混合查詢能力: 許多向量數(shù)據(jù)庫還支持結(jié)合向量查詢和結(jié)構(gòu)化數(shù)據(jù)查詢,這意味著除了向量相似性搜索之外,還可以進(jìn)行SQL風(fēng)格的查詢來篩選結(jié)構(gòu)化屬性。

5.擴(kuò)展性和容錯(cuò)性: 高效的數(shù)據(jù)分布和復(fù)制策略,使得向量數(shù)據(jù)庫可以水平擴(kuò)展,以處理海量數(shù)據(jù),并且具備數(shù)據(jù)冗余和故障恢復(fù)能力。

6.實(shí)時(shí)更新: 允許動(dòng)態(tài)添加和刪除向量數(shù)據(jù),支持實(shí)時(shí)更新,這對(duì)于不斷變化的數(shù)據(jù)集尤其重要。

7.云原生設(shè)計(jì): 許多現(xiàn)代向量數(shù)據(jù)庫采用云原生架構(gòu),可以輕松部署在云端,利用云服務(wù)的彈性計(jì)算資源。

向量數(shù)據(jù)庫在多個(gè)領(lǐng)域得到應(yīng)用,包括推薦系統(tǒng)、圖像和視頻檢索、自然語言處理(NLP)以及生物信息學(xué)。一些知名的向量數(shù)據(jù)庫項(xiàng)目包括FAISS(由Facebook AI Research開發(fā))、Pinecone、Weaviate、Qdrant、Milvus等。

?

(四)RAG

文章題目中的 "智能問答" 其實(shí)專業(yè)術(shù)語 叫 RAG;

在大模型(尤其是大型語言模型,LLMs)中,RAG 指的是“Retrieval-Augmented Generation”,即檢索增強(qiáng)生成。這是一種結(jié)合了 檢索(Retrieval)和生成(Generation)技術(shù)的人工智能方法, 主要用于增強(qiáng)語言模型在處理需要外部知識(shí)或?qū)崟r(shí)信息的任務(wù)時(shí)的表現(xiàn);

?

RAG 是 "Retrieval-Augmented Generation" 的縮寫,即檢索增強(qiáng)生成。這是一種結(jié)合了檢索(Retrieval)和生成(Generation)兩種技術(shù)的人工智能模型架構(gòu)。RAG 最初由 Facebook AI 在 2020 年提出,其核心思想是在生成式模型中加入一個(gè)檢索組件,以便在生成過程中利用外部知識(shí)庫中的相關(guān)文檔或片段。

在傳統(tǒng)的生成模型中,如基于Transformer的模型,輸出完全依賴于模型的內(nèi)部知識(shí),這通常是在大規(guī)模語料庫上進(jìn)行預(yù)訓(xùn)練得到的。然而,這些模型可能無法包含所有特定領(lǐng)域或最新更新的信息,尤其是在處理專業(yè)性較強(qiáng)或時(shí)效性較高的問題時(shí)。

RAG 架構(gòu)通過從外部知識(shí)源檢索相關(guān)信息來增強(qiáng)生成過程。當(dāng)模型需要生成響應(yīng)時(shí),它會(huì)首先查詢一個(gè)文檔集合或知識(shí)圖譜,找到與輸入相關(guān)的上下文信息,然后將這些信息與原始輸入一起送入生成模型,從而產(chǎn)生更加準(zhǔn)確和豐富的內(nèi)容。

?

工作原理

1.檢索(Retrieval):

?當(dāng)模型接收到一個(gè)輸入或查詢時(shí),RAG 首先從外部知識(shí)庫或數(shù)據(jù)源中檢索相關(guān)信息。 這通常涉及到使用向量數(shù)據(jù)庫和近似最近鄰搜索算法來找到與輸入最相關(guān)的文檔片段或知識(shí)條目。

1.生成(Generation):

?一旦檢索到相關(guān)的信息,這些信息會(huì)被整合到生成模型的輸入中,作為上下文或提示(prompt)。 這樣,當(dāng)模型生成輸出時(shí),它就能利用這些額外的信息來提供更準(zhǔn)確、更詳細(xì)和更相關(guān)的響應(yīng)。

?

基本流程:

wKgaomb2U2iAY062AAn54rjsgcw247.png

?

RAG的優(yōu)勢(shì):

1.減少知識(shí)局限性:LLMs 通常受限于其訓(xùn)練數(shù)據(jù),而 RAG 可以讓模型訪問實(shí)時(shí)或最新的信息,從而克服這一限制。

2.減少幻覺:幻覺是指模型生成不存在于其訓(xùn)練數(shù)據(jù)中的不真實(shí)信息。RAG 通過提供事實(shí)依據(jù),可以減少這種現(xiàn)象。

3.提高安全性:RAG 可以通過控制檢索的范圍和類型,避免模型生成潛在的有害或敏感信息。

4.增強(qiáng)領(lǐng)域?qū)I(yè)性:對(duì)于特定領(lǐng)域的查詢,RAG 可以從專業(yè)的知識(shí)庫中檢索信息,從而使模型的回答更具專業(yè)性

?

RAG 可以應(yīng)用于多種場(chǎng)景,包括但不限于:

?問答系統(tǒng):RAG 能夠檢索到與問題最相關(guān)的答案片段,然后基于這些片段生成最終的回答。

?對(duì)話系統(tǒng):在對(duì)話中,RAG 可以幫助模型引用歷史對(duì)話或外部知識(shí)來生成更自然、更有信息量的回復(fù)。

?文檔摘要:RAG 能夠從大量文檔中提取關(guān)鍵信息,生成總結(jié)或概述。

?文本補(bǔ)全:在文本補(bǔ)全任務(wù)中,RAG 可以參考相關(guān)文檔來提供更準(zhǔn)確的建議。

?

RAG 架構(gòu)的一個(gè)重要組成部分是檢索組件,它通常使用向量相似度搜索技術(shù),如倒排索引或基于神經(jīng)網(wǎng)絡(luò)的嵌入空間搜索。這使得模型能夠在大規(guī)模文檔集合中快速找到最相關(guān)的部分。

?

AI 應(yīng)用開發(fā)框架

(一)Langchain

官網(wǎng):https://www.langchain.com/langchain?

LangChain不是一個(gè)大數(shù)據(jù)模型,而是一款可以用于開發(fā)類似AutoGPT的AI應(yīng)用的開發(fā)工具,LangChain簡(jiǎn)化了LLM應(yīng)用程序生命周期的各個(gè)階段,且提供了 開發(fā)協(xié)議、開發(fā)范式,并 擁有相應(yīng)的平臺(tái)和生態(tài);

?

LangChain 是一個(gè)由 Harrison Chase 創(chuàng)立的框架,專注于幫助開發(fā)者使用語言模型構(gòu)建端到端的應(yīng)用程序。它特別設(shè)計(jì)來簡(jiǎn)化與大型語言模型(LLMs)的集成,使得創(chuàng)建由這些模型支持的應(yīng)用程序變得更加容易。LangChain 提供了一系列工具、組件和接口,可以用于構(gòu)建聊天機(jī)器人、生成式問答系統(tǒng)、摘要工具以及其他基于語言的AI應(yīng)用。

LangChain 的核心特性包括:

1.鏈?zhǔn)剿季S(Chains): LangChain 引入了“鏈”(Chain)的概念,這是一系列可組合的操作,可以按順序執(zhí)行,比如從獲取輸入、處理數(shù)據(jù)到生成輸出。鏈條可以嵌套和組合,形成復(fù)雜的邏輯流。

2.代理(Agents): 代理是更高級(jí)別的抽象,它們可以自主地決定如何使用不同的鏈條來完成任務(wù)。代理可以根據(jù)輸入動(dòng)態(tài)選擇最佳行動(dòng)方案。

3.記憶(Memory): LangChain 支持不同類型的內(nèi)存,允許模型保留歷史對(duì)話或操作的上下文,這對(duì)于構(gòu)建有狀態(tài)的對(duì)話系統(tǒng)至關(guān)重要。

4.加載器和拆分器(Loaders and Splitters): 這些工具幫助讀取和處理各種格式的文檔,如PDF、網(wǎng)頁、文本文件等,為模型提供輸入數(shù)據(jù)。

5.提示工程(Prompt Engineering): LangChain 提供了創(chuàng)建和管理提示模板的工具,幫助引導(dǎo)模型生成特定類型的內(nèi)容。

6.Hub: LangChain Hub 是一個(gè)社區(qū)驅(qū)動(dòng)的資源庫,其中包含了許多預(yù)構(gòu)建的鏈條、代理和提示,可以作為構(gòu)建塊來加速開發(fā)過程。

7.與外部系統(tǒng)的集成: LangChain 支持與外部數(shù)據(jù)源和API的集成,如數(shù)據(jù)庫查詢、知識(shí)圖譜、搜索引擎等,以便模型能夠訪問更廣泛的信息。

8.監(jiān)控和調(diào)試工具: 為了更好地理解和優(yōu)化應(yīng)用程序,LangChain 提供了日志記錄和分析功能,幫助開發(fā)者追蹤模型的行為和性能。

?

(二)LangChain4J

上面說的 LangChain 是基于python 開發(fā)的,而 LangChain4J 是一個(gè)旨在為 Java 開發(fā)者提供構(gòu)建語言模型應(yīng)用的框架。受到 Python 社區(qū)中 LangChain 庫的啟發(fā),LangChain4J 致力于提供相似的功能,但針對(duì) Java 生態(tài)系統(tǒng)進(jìn)行了優(yōu)化。它允許開發(fā)者輕松地構(gòu)建、部署和維護(hù)基于大型語言模型的應(yīng)用程序,如聊天機(jī)器人、文本生成器和其他自然語言處理(NLP)任務(wù)。

主要特點(diǎn):

1.模塊化設(shè)計(jì):LangChain4J 提供了一系列可組合的模塊,包括語言模型、記憶、工具和鏈,使得開發(fā)者可以構(gòu)建復(fù)雜的語言處理流水線。

2.支持多種語言模型:LangChain4J 支持與各種語言模型提供商集成,如 Hugging Face、OpenAI、Google PaLM 等,使得開發(fā)者可以根據(jù)項(xiàng)目需求選擇最合適的模型。

3.記憶機(jī)制:它提供了記憶組件,允許模型記住先前的對(duì)話歷史,從而支持上下文感知的對(duì)話。

4.工具集成:LangChain4J 支持集成外部工具,如搜索API、數(shù)據(jù)庫查詢等,使得模型能夠訪問實(shí)時(shí)數(shù)據(jù)或執(zhí)行特定任務(wù)。

5.鏈?zhǔn)綀?zhí)行:通過鏈?zhǔn)綀?zhí)行,可以將多個(gè)語言處理步驟鏈接在一起,形成復(fù)雜的處理流程,例如先分析用戶意圖,再查詢數(shù)據(jù)庫,最后生成回復(fù)。

?

主要功能:

1.LLM 適配器:允許你連接到各種語言模型,如 OpenAI 的 GPT-3 和 GPT-4,Anthropic 的 Claude 等。

2.Chains 構(gòu)建:提供一種機(jī)制來定義和執(zhí)行一系列操作,這些操作可以包括調(diào)用模型、數(shù)據(jù)檢索、轉(zhuǎn)換等,以完成特定的任務(wù)。

3.Agent 實(shí)現(xiàn):支持創(chuàng)建代理(agents),它們可以自主地執(zhí)行任務(wù),如回答問題、完成指令等。

4.Prompt 模板:提供模板化的提示,幫助指導(dǎo)模型生成更具體和有用的回答。

5.工具和記憶:允許模型訪問外部數(shù)據(jù)源或存儲(chǔ)之前的交互記錄,以便在會(huì)話中保持上下文。

6.模塊化和可擴(kuò)展性:使開發(fā)者能夠擴(kuò)展框架,添加自己的組件和功能。

?

本地問答系統(tǒng)搭建環(huán)境準(zhǔn)備

(一)用 Ollama 啟動(dòng)一個(gè)本地大模型

1.下載安裝 Ollma

2.ollama 是一個(gè)命令行工具,用于方便地在本地運(yùn)行 LLaMA 系列模型和其他類似的 transformer 基礎(chǔ)的大型語言模型。該工具簡(jiǎn)化了模型的下載、配置和推理過程,使得個(gè)人用戶能夠在自己的機(jī)器上直接與這些模型交互,而不需要直接接觸復(fù)雜的模型加載和推理代碼;

3.下載地址:https://ollama.com/,下載完成后,打開 Ollma,其默認(rèn)端口為11334,瀏覽器訪問:http://localhost:11434 ,會(huì)返回:Ollama is running,電腦右上角展示圖標(biāo);

wKgZomb2U2iAeEukAAA10C-02ss989.png

1.下載 大模型

2.安裝完成后,通過命令行下載大模型,命令行格式:ollma pull modelName,如:ollma pull llama3;

3.大模型一般要幾個(gè)G,需要等一會(huì);個(gè)人建議至少下載兩個(gè), llama3、 qwen(通義千問),這兩個(gè)都是開源免費(fèi)的,英文場(chǎng)景 用 llama3,中文場(chǎng)景用 qwen;

?

下載完成后,通過 ollma list 可以查看 已下載的大模型;

wKgaomb2U2mAaVroAAFpFaM0uBg454.png

?

1.啟動(dòng) 大模型

確認(rèn)下載完成后,用命令行 :ollma run 模型名稱,來啟動(dòng)大模型;啟動(dòng)后,可以立即輸入內(nèi)容與大模型進(jìn)行對(duì)話,如下:

wKgZomb2U22AbR2fABuJ2uY-fNg050.png

?

(二)啟動(dòng) 本地向量數(shù)據(jù)庫 chromadb

Chroma 是一款 AI 原生開源矢量數(shù)據(jù)庫,它內(nèi)置了入門所需的一切,可在本地運(yùn)行,是一款很好的入門級(jí)向量數(shù)據(jù)庫。

1.安裝:pip install chromadb ;

2.啟動(dòng):chroma run :

wKgaomb2U2-AQ6ImAA4KILbV33I225.png

?

用java 實(shí)現(xiàn) 本地AI問答功能

(一)核心maven依賴:


    8
    8
    UTF-8
    0.31.0



    
    
        dev.langchain4j
        langchain4j-core
        ${langchain4j.version}
    
    
        dev.langchain4j
        langchain4j
        ${langchain4j.version}
    
    
        dev.langchain4j
        langchain4j-open-ai
        ${langchain4j.version}
    

    
        dev.langchain4j
        langchain4j-embeddings
        ${langchain4j.version}
    
    
        dev.langchain4j
        langchain4j-chroma
        ${langchain4j.version}
    

    
    
        dev.langchain4j
        langchain4j-ollama
        ${langchain4j.version}
    

    
    
        io.github.amikos-tech
        chromadb-java-client
        0.1.5
    
    


?

(二)代碼編寫:

1. 加載本地文件作為本地知識(shí)庫:

public static void main(String[] args) throws ApiException {
    //======================= 加載文件=======================
    Document document = getDocument("笑話.txt");
    
}


private static Document getDocument(String fileName) {
        URL docUrl = LangChainMainTest.class.getClassLoader().getResource(fileName);
        if (docUrl == null) {
            log.error("未獲取到文件");
        }

        Document document = null;
        try {
            Path path = Paths.get(docUrl.toURI());
            document = FileSystemDocumentLoader.loadDocument(path);
        } catch (URISyntaxException e) {
            log.error("加載文件發(fā)生異常", e);
        }
        return document;
    }

1.拆分文件內(nèi)容:

//======================= 拆分文件內(nèi)容=======================
//參數(shù):分段大?。ㄒ粋€(gè)分段中最大包含多少個(gè)token)、重疊度(段與段之前重疊的token數(shù))、分詞器(將一段文本進(jìn)行分詞,得到token)
DocumentByLineSplitter lineSplitter = new DocumentByLineSplitter(200, 0, new OpenAiTokenizer());
List segments = lineSplitter.split(document);
log.info("segment的數(shù)量是: {}", segments.size());

//查看分段后的信息
segments.forEach(segment -> log.info("========================segment: {}", segment.text()));

?

1.文本向量化 并存儲(chǔ)到向量數(shù)據(jù)庫:

//提前定義兩個(gè)靜態(tài)變量
private static final String CHROMA_DB_DEFAULT_COLLECTION_NAME = "java-langChain-database-demo";
private static final String CHROMA_URL = "http://localhost:8000";


//======================= 文本向量化=======================
OllamaEmbeddingModel embeddingModel = OllamaEmbeddingModel.builder()
        .baseUrl("http://localhost:11434")
        .modelName("llama3")
        .build();

//======================= 向量庫存儲(chǔ)=======================
Client client = new Client(CHROMA_URL);

//創(chuàng)建向量數(shù)據(jù)庫
EmbeddingStore embeddingStore = ChromaEmbeddingStore.builder()
        .baseUrl(CHROMA_URL)
        .collectionName(CHROMA_DB_DEFAULT_COLLECTION_NAME)
        .build();

segments.forEach(segment -> {
    Embedding e = embeddingModel.embed(segment).content();
    embeddingStore.add(e, segment);
});

?

1.向量庫檢索:

//======================= 向量庫檢索=======================
String qryText = "北極熊";
Embedding queryEmbedding = embeddingModel.embed(qryText).content();

EmbeddingSearchRequest embeddingSearchRequest = EmbeddingSearchRequest.builder().queryEmbedding(queryEmbedding).maxResults(1).build();
EmbeddingSearchResult embeddedEmbeddingSearchResult = embeddingStore.search(embeddingSearchRequest);
List> embeddingMatcheList = embeddedEmbeddingSearchResult.matches();
EmbeddingMatch embeddingMatch = embeddingMatcheList.get(0);
TextSegment textSegment = embeddingMatch.embedded();
log.info("查詢結(jié)果: {}", textSegment.text());

1.與LLM交互

//======================= 與LLM交互=======================
PromptTemplate promptTemplate = PromptTemplate.from("基于如下信息用中文回答:n" +
        "{{context}}n" +
        "提問:n" +
        "{{question}}");
Map variables = new HashMap();
//以向量庫檢索到的結(jié)果作為L(zhǎng)LM的信息輸入
variables.put("context", textSegment.text());
variables.put("question", "北極熊干了什么");
Prompt prompt = promptTemplate.apply(variables);

//連接大模型
OllamaChatModel ollamaChatModel = OllamaChatModel.builder()
        .baseUrl("http://localhost:11434")
        .modelName("llama3")
        .build();

UserMessage userMessage = prompt.toUserMessage();
Response aiMessageResponse = ollamaChatModel.generate(userMessage);
AiMessage response = aiMessageResponse.content();
log.info("大模型回答: {}", response.text());

(三)功能測(cè)試:

1.代碼中用到 "笑話.txt" 是我隨便從網(wǎng)上找的一段內(nèi)容,大家可以隨便輸入點(diǎn)內(nèi)容,為了給大家展示測(cè)試結(jié)果,我貼一下我 文本內(nèi)容:

有一只北極熊和一只企鵝在一起耍,
企鵝把身上的毛一根一根地拔了下來,拔完之后,對(duì)北極熊說:“好冷哦!”
北極熊聽了,也把自己身上的毛一根一根地拔了下來,
轉(zhuǎn)頭對(duì)企鵝說:
”果然很冷!”

1.當(dāng)我輸入問題:“北極熊干了什么”,程序打印如下結(jié)果:

根據(jù)故事,北極熊把自己的身上的毛一根一根地拔了下來

?

結(jié)語

1.以上便是 完成了一個(gè)超簡(jiǎn)易的AI問答 功能,如果想搭一個(gè)問答系統(tǒng),可以用Springboot搞一個(gè)Web應(yīng)用,把上面的代碼放到 業(yè)務(wù)邏輯中即可;

2.langchain 還有其他很多很強(qiáng)大的能力,prompt Fomat、output Fomat、工具調(diào)用、memory存儲(chǔ)等;

3.早點(diǎn)認(rèn)識(shí)和學(xué)習(xí)ai,不至于被它取代的時(shí)候,連對(duì)手是誰都不知道;

?

參考資料

1.?langchain 官網(wǎng)?

2.?langchain 入門教程?

3.?langchain4j github?

4.?langchain4j 視頻介紹?

?審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • JAVA
    +關(guān)注

    關(guān)注

    19

    文章

    2952

    瀏覽量

    104493
  • AI大模型
    +關(guān)注

    關(guān)注

    0

    文章

    307

    瀏覽量

    276
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    沙特計(jì)劃啟動(dòng)千億美元級(jí)AI項(xiàng)目"超越計(jì)劃"

    據(jù)知情人士透露,沙特阿拉伯正積極籌備項(xiàng)名為“超越計(jì)劃”(Project Transcendence)的人工智能(AI)項(xiàng)目,該項(xiàng)目預(yù)計(jì)將獲得高達(dá)1000億美元的資金支持,旨在打造個(gè)
    的頭像 發(fā)表于 11-07 14:54 ?315次閱讀

    OCTC發(fā)布"算力工廠"!力促智算中心高效規(guī)劃建設(shè)投運(yùn)

    創(chuàng)新提出面向未來數(shù)據(jù)中心的"算力工廠"模式,核心是以規(guī)(劃)、建(設(shè))、運(yùn)(營)體化的交鑰匙工程,實(shí)現(xiàn)智算中心快速投運(yùn)、綠色低碳,在當(dāng)前AIGC算力供需挑戰(zhàn)下,開創(chuàng)了智算中心建設(shè)運(yùn)營的新思路、新方法,讓客戶
    的頭像 發(fā)表于 10-11 09:10 ?451次閱讀
    OCTC發(fā)布&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;算力工廠&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;!力促智算中心高效規(guī)劃建設(shè)投運(yùn)

    軟通動(dòng)力攜手華為啟動(dòng)&amp;quot;智鏈險(xiǎn)界&amp;quot;計(jì)劃,強(qiáng)化生態(tài)鏈接共啟保險(xiǎn)AI新時(shí)代

    軟通動(dòng)力攜子品牌軟通金科受邀參加此次大會(huì),發(fā)表&quot;智馭未來 ? 探索保險(xiǎn)AI新業(yè)態(tài)&quot;主旨演講,并攜手華為正式啟動(dòng)&quot;智鏈險(xiǎn)界——保險(xiǎn)生態(tài)場(chǎng)景鏈接計(jì)劃&
    的頭像 發(fā)表于 09-23 19:22 ?307次閱讀
    軟通動(dòng)力攜手華為啟動(dòng)&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;智鏈險(xiǎn)界&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;計(jì)劃,強(qiáng)化生態(tài)鏈接共啟保險(xiǎn)<b class='flag-5'>AI</b>新時(shí)代

    AI賦能B2B營銷,徑碩科技&amp;quot;融合AI?驅(qū)動(dòng)AI&;quot;峰會(huì)成功舉辦

    上海2024年7月16日?/美通社/ -- 寒冬之下,很多B2B企業(yè)寄希望于AI能夠"點(diǎn)石成金",但是缺乏具體可以結(jié)合的落地點(diǎn),找到適合自己且有效的營銷場(chǎng)景是關(guān)鍵。 B2B對(duì)于AI營銷上
    的頭像 發(fā)表于 07-16 16:58 ?400次閱讀
    <b class='flag-5'>AI</b>賦能B2B營銷,徑碩科技&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;融合<b class='flag-5'>AI</b>?驅(qū)動(dòng)<b class='flag-5'>AI&</b>;<b class='flag-5'>quot</b>;峰會(huì)成功舉辦

    全方位精準(zhǔn)測(cè)量技術(shù)助力:中國經(jīng)濟(jì)加力發(fā)展向前&amp;amp;quot;進(jìn)&amp;amp;quot;

    全方位精準(zhǔn)測(cè)量技術(shù)助力:中國經(jīng)濟(jì)加力發(fā)展向前&quot;進(jìn)&quot;
    的頭像 發(fā)表于 07-15 09:53 ?297次閱讀
    全方位精準(zhǔn)測(cè)量技術(shù)助力:中國經(jīng)濟(jì)加力發(fā)展向前&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;進(jìn)&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;

    擷發(fā)科技COMPUTEX 2024展示先進(jìn)&amp;quot;AI設(shè)計(jì)技術(shù)服務(wù)&amp;quot;和&amp;quot;全套IC設(shè)計(jì)解決方案&amp;quot;

    臺(tái)北2024年6月3日?/美通社/ -- AI人工智能的應(yīng)用,是全球科技產(chǎn)業(yè)最重要的議題,而創(chuàng)新IC設(shè)計(jì)更是先進(jìn)AI芯片的決勝關(guān)鍵。重新定義IC設(shè)計(jì)可能性的擷發(fā)科技 (Microip Inc.
    的頭像 發(fā)表于 06-03 19:57 ?319次閱讀

    晶科能源榮獲EUPD Research授予的六項(xiàng)&amp;quot;頂級(jí)光伏品牌&amp;quot;稱號(hào)

    近日,由權(quán)威調(diào)研機(jī)構(gòu)EUPD Research頒發(fā),晶科能源在巴西、哥倫比亞、墨西哥、智利等拉美主要國家六個(gè)地區(qū)榮獲 &quot;頂級(jí)光伏品牌 &quot;稱號(hào)。憑借先進(jìn)的技術(shù)、完善的流程和對(duì)卓越的不懈追求,晶科能源將繼續(xù)提升行
    的頭像 發(fā)表于 05-10 09:17 ?459次閱讀
    晶科能源榮獲EUPD Research授予的六項(xiàng)&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;頂級(jí)光伏品牌&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;稱號(hào)

    九聯(lián)科技推出款&amp;quot;射手座&amp;quot;UMA502-T7物聯(lián)網(wǎng)模組

    在物聯(lián)網(wǎng)技術(shù)飛速發(fā)展的時(shí)代背景下,九聯(lián)科技憑借深厚的研發(fā)底蘊(yùn)與創(chuàng)新精神,精心打造出象征著自由探索與勇敢進(jìn)取精神的&quot;射手座&quot;UMA502-T7模組,以昂揚(yáng)之姿挺進(jìn)海外市場(chǎng),宣告了九聯(lián)科技物聯(lián)網(wǎng)模組國際化進(jìn)程的盛大起航。
    的頭像 發(fā)表于 04-14 09:38 ?827次閱讀

    科沃斯掃地機(jī)器人通過TüV萊茵&amp;quot;防纏繞&amp;quot;和&amp;quot;高效邊角清潔&amp;quot;認(rèn)證

    3月15日,在2024中國家電及消費(fèi)電子博覽會(huì)(AWE)上,國際獨(dú)立第三方檢測(cè)、檢驗(yàn)和認(rèn)證機(jī)構(gòu)德國萊茵TüV大中華區(qū)(簡(jiǎn)稱&quot;TüV萊茵&quot;)為科沃斯兩款掃地機(jī)器人(型號(hào):DDX14、DDX11)
    的頭像 發(fā)表于 03-17 10:49 ?810次閱讀

    Quanterix宣布Tau217血液檢測(cè)被美國FDA授予 &amp;quot;突破性器械 &amp;quot;認(rèn)證

    3月4日,Quanterix宣布其Simoa磷酸化Tau217(p-Tau 217)血液檢測(cè)已被美國FDA授予 &quot;突破性器械 &quot;認(rèn)證,可用于阿爾茨海默病 (AD) 的輔助診斷評(píng)估。
    的頭像 發(fā)表于 03-12 17:23 ?2219次閱讀

    電池&amp;quot;無&amp;quot;隔膜?SEI新&amp;quot;膜&amp;quot;法!

    枝晶是阻礙鋅基水系電池發(fā)展的個(gè)亟待解決的問題。電沉積過程主要包含離子遷移、電還原和電結(jié)晶三個(gè)步驟。
    的頭像 發(fā)表于 03-11 10:03 ?889次閱讀
    電池&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;無&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;隔膜?SEI新&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;膜&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;法!

    中創(chuàng)新航榮獲逸動(dòng)科技2023年度&amp;quot;優(yōu)秀戰(zhàn)略合作伙伴獎(jiǎng)&amp;quot;

    近日,中創(chuàng)新航憑借電動(dòng)船舶領(lǐng)域領(lǐng)先的技術(shù)實(shí)力、卓越的產(chǎn)品質(zhì)量、持續(xù)穩(wěn)定的交付能力以及優(yōu)質(zhì)高效的服務(wù),榮獲逸動(dòng)科技2023年度&quot;優(yōu)秀戰(zhàn)略合作伙伴獎(jiǎng)&quot;。
    的頭像 發(fā)表于 02-29 13:51 ?445次閱讀

    第二代配網(wǎng)行波故障預(yù)警與定位裝置YT/XJ-001:守護(hù)電力線路的超能&amp;amp;quot;哨兵&amp;amp;quot;

    第二代配網(wǎng)行波故障預(yù)警與定位裝置YT/XJ-001:守護(hù)電力線路的超能&quot;哨兵&quot; 電力,如同現(xiàn)代社會(huì)的血脈,支撐著我們的生活和工作正常運(yùn)行。然而,旦這條血脈出現(xiàn)故障,生活和工作
    的頭像 發(fā)表于 01-22 15:11 ?504次閱讀
    第二代配網(wǎng)行波故障預(yù)警與定位裝置YT/XJ-001:守護(hù)電力線路的超能&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;哨兵&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;

    電流互感器帶&amp;quot;S&amp;quot;和不帶S所表示的含義及區(qū)別

    電流互感器帶&quot;S&quot;和不帶S都是表示測(cè)量電流互感器精度等級(jí)。在規(guī)定使用條件下,互感器的誤差在該等級(jí)規(guī)定的限值之內(nèi)。電力工程中計(jì)量常用的等級(jí)有0.2、0.5、0.2S、0.5S等。
    的頭像 發(fā)表于 01-14 10:32 ?1451次閱讀
    電流互感器帶&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;S&<b class='flag-5'>amp</b>;<b class='flag-5'>quot</b>;和不帶S所表示的含義及區(qū)別

    智慧光迅榮獲2023年&amp;quot;智能物聯(lián)成長(zhǎng)力企業(yè)&amp;quot;獎(jiǎng)項(xiàng)

    深圳智慧光迅信息技術(shù)有限公司榮獲2023年中國物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)的&quot;智能物聯(lián)成長(zhǎng)力企業(yè)&quot;獎(jiǎng)項(xiàng)。
    的頭像 發(fā)表于 12-09 10:21 ?877次閱讀