ADC指模/數轉換器或者模數轉換器是指將連續(xù)變化的模擬信號轉換為離散的數字信號的器件。真實世界的模擬信號,例如溫度、壓力、聲音或者圖像等,需要轉換成更容易儲存、處理和發(fā)射的數字形式。模/數轉換器可以實現這個功能,在各種不同的產品中都可以找到它的身影。
ADC制造商在數據手冊中定義ADC性能的方式令人困惑,并且可能會在應用開發(fā)中導致錯誤的推斷。最大的困惑也許就是“分辨率”和“精確度”了——即Resolution和Accuracy,這是兩個不同的參數,卻經常被混用,但事實上,分辨率并不能代表精確度,反之亦然。本文提出并解釋了ADC“分辨率”和“精確度”,它們與動態(tài)范圍、噪聲層的關系,以及在諸如計量等應用中的含義。
adc的參數
1)分辯率(Resolution) 指數字量變化一個最小量時模擬信號的變化量,定義為滿刻度與2n的比值。分辯率又稱精度,通常以數字信號的位數來表示。
2) 轉換速率(Conversion Rate)是指完成一次從模擬轉換到數字的AD轉換所需的時間的倒數。積分型AD的轉換時間是毫秒級屬低速AD,逐次比較型AD是微秒級屬中速AD,全并 行/串并行型AD可達到納秒級。采樣時間則是另外一個概念,是指兩次轉換的間隔。為了保證轉換的正確完成,采樣速率(Sample Rate)必須小于或等于轉換速率。因此有人習慣上將轉換速率在數值上等同于采樣速率也是可以接受的。常用單位是ksps和Msps,表示每秒采樣千/百 萬次(kilo / Million Samples per Second)。
3)量化誤差(Quantizing Error) 由于AD的有限分辯率而引起的誤差,即有限分辯率AD的階梯狀轉移特性曲線與無限分辯率AD(理想AD)的轉移特性曲線(直線)之間的最大偏差。通常是1 個或半個最小數字量的模擬變化量,表示為1LSB、1/2LSB。
4)偏移誤差(Offset Error) 輸入信號為零時輸出信號不為零的值,可外接電位器調至最小。
5)滿刻度誤差(Full Scale Error) 滿度輸出時對應的輸入信號與理想輸入信號值之差。 6)線性度(Linearity) 實際轉換器的轉移函數與理想直線的最大偏移,不包括以上三種誤差。 其他指標還有:絕對精度(Absolute Accuracy) ,相對精度(Relative Accuracy),微分非線性,單調性和無錯碼,總諧波失真(Total Harmonic Distotortion縮寫THD)和積分非線性。
AD的選擇,首先看精度和速度,然后看是幾路的,什么輸出的比如SPI或者并行的,差分還是單端輸入的,輸入范圍是多少,這些都是選AD需要考慮的。DA 呢,主要是精度和輸出,比如是電壓輸出啊,4-20mA電流輸出啊,等等。DSP呢,用來計算嘛,所以主要是看運算能力了,當然,外圍的接口也是需要考慮 的。個人看法,TI的單DSP處理能力還可以,ADI的多DSP聯合使用的優(yōu)點特別突出,當然了,不同檔次的DSP的運算能力和速度都是有很大差別的。
ADC的動態(tài)范圍精確度和分辨率
動態(tài)范圍被定義為系統(tǒng)可測量到的最小和最大信號的比例。
最大信號可為峰間值,零到峰(Zero-to-Peak)值或均方根(RMS)滿量程。其中任何一個都會給出不同值。例如,對于一個1V正弦波來說: 峰間(滿量程)值=2V 零到峰值=1V
RMS滿量程=0.707×峰值振幅=0.707×1V=0.707V
最小信號通常為RMS噪聲,這是在未應用信號時測量的信號的均方根值。測量得到的RMS噪聲級別將取決于測量時使用的帶寬。每當帶寬翻倍,記錄的噪聲將增長1.41或3dB。
因此,一定要注意動態(tài)范圍數字始終與某個帶寬相關,而后者通常未被指定,這使記錄的值變得沒有意義。 器件的信噪比(SNR)和動態(tài)范圍多數時候被定義為同一個值,即: 動態(tài)范圍 = SNR = RMS滿量程/RMS噪聲 并且經常使用dB作為單位,即
動態(tài)范圍(dB) = SNR(dB) = 20*Log10 (RMS滿量程/RMS噪聲)
與使用RMS滿量程相反,一些制造商為了使圖表看上去更漂亮,引用零到峰或峰間值,這使得最終的動態(tài)范圍或SNR增加了3dB或9dB,因此我們需要仔細研究規(guī)范以避免誤解。
在討論ADC性能時,分辨率和精確度是經常被混用的兩個術語。一定要注意,分辨率并不能代表精確度,反之亦然。
ADC分辨率由數字化輸入信號時所使用的比特數決定。對于16位器件,總電壓范圍被表示為216 (65536)個獨立的數字值或輸出代碼。因此,系統(tǒng)可以測量的絕對最小電平表示為1比特,或ADC電壓范圍的1/65536。
A/D轉換器的精確度是指對于給定模擬輸入,實際數字輸出與理論預期數字輸出之間的接近度。換而言之,轉換器的精確度決定了數字輸出代碼中有多少個比特表示有關輸入信號的有用信息。
如前所述,對于16位ADC分辨率,由于出現內部或外部誤差源,實際的精確度可能遠小于分辨率。因此,舉例而言,一個給定的16位ADC可能只能提供12位的精確度。對于這種情況,4LSb(最低有效位)表示ADC中生成的隨機噪聲。
ADC動態(tài)范圍和ADC精確度通常指相同的內容。 圖 1 展示了基本的ADC測量電路。
圖1:基本的ADC測量電路。
理想ADC生成一個數字輸出代碼,是關于模擬信號電壓和電壓參考輸入的方程,其中 輸出代碼 = 滿量程電壓 × [VIN+ - VIN-] / [VREF+ - VREF-] = 滿量程電壓 × [VIN /VREF]
每個數字輸出代碼表示參考電壓的一個小數值。
必須注意,ADC動態(tài)范圍應當匹配將要轉換的信號的最大振幅,這樣才能使ADC轉換精度最大化。 現在假設將要轉換的信號在0V到2.5V間變化,而VREF等于3.3V,如圖2所示。
圖2:輸入信號振幅和ADC動態(tài)范圍。
16位ADC將包括216 = 65536個步驟或轉換,且最低有效位(LSB)=VREF/65536=3.3V/65536=50.35uV。對于理想的ADC,所有代碼都具有1LSB的相同寬度。
如果ADC的最大信號值為2.5V,那么意味著總共有49652次轉換(2.5V/1LSB)。對于這種情況,將有15884次轉換未被使用(65536-49652=15884)。這反應了轉換后的信號精確度損失或ENOB損失(損失0.4位)。 如果ADC參考(VREF)和ADC最大信號電平之間的差異增加,那么ENOB損失或精確度損失將加劇。例如,如果ADC最大信號電平為1.2V且VREF=3.3V,那么ENOB損失將為1.5位。因此ADC動態(tài)范圍一定要匹配最大信號振幅,以獲得最高精確度。
評論
查看更多