電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>通信網(wǎng)絡(luò)>通信網(wǎng)絡(luò)產(chǎn)品創(chuàng)意>故障特征提取的方法研究

故障特征提取的方法研究

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

基于卷積神經(jīng)網(wǎng)絡(luò)的雙重特征提取方法

機(jī)器學(xué)習(xí)技術(shù)已被廣泛接受,并且很適合此類分類問題?;诰矸e神經(jīng)網(wǎng)絡(luò)的雙重特征提取方法。提出的模型使用Radon拉冬變換進(jìn)行第一次特征提取,然后將此特征輸入卷積層進(jìn)行第二次特征提取。
2023-10-16 11:30:38381

HOOFR-SLAM的系統(tǒng)框架及其特征提取

Intelligent Vehicles Applications1. 介紹2. HOOFR-SLAM2.1 系統(tǒng)框架2.2 HOOFR特征提取2.3 映射線程2.3.1 特征匹配1. 介紹提出一種HOOFR-...
2021-12-21 06:35:49

MATLAB中怎么對音頻信號頻譜圖中能量密度特征用數(shù)學(xué)形態(tài)學(xué)的方法進(jìn)行特征提取?

MATLAB中對音頻信號進(jìn)行小波分解和短時(shí)傅里葉分析后怎么對信號頻譜圖中能量密度特征用數(shù)學(xué)形態(tài)學(xué)的方法進(jìn)行形態(tài)特征提取
2020-10-12 18:21:04

分形特征的模擬電路故障診斷方法

針對模擬電路中存在的非線性問題,提出一種以模擬電路分形特征為輸入量的故障診斷方法。通過對多測試分量數(shù)據(jù)進(jìn)行分形特征提取,輸入神經(jīng)網(wǎng)絡(luò)建立信息融合中心融合處理各分形特征量,利用多源性互補(bǔ)信息減少模擬
2010-05-06 08:57:26

基于matlab的人臉檢測K-L的人臉識別(膚色分割和特征提取

基于matlab的人臉檢測K-L的人臉識別(膚色分割和特征提取)[hide] [/hide]《labview人臉識別》課程鏈接:http://url.elecfans.com/u/bc0e010da8
2012-02-22 16:45:03

基于局域判別基的音頻信號特征提取方法

音頻特征提取在音頻信號分析和處理中起著非常重要的作用。考慮到音頻信號的非平穩(wěn)性,對音頻信號進(jìn)行小波包分解,為了獲取健壯的特征,采用改進(jìn)的局域判別基(LDB)技術(shù)對小波包樹進(jìn)行裁剪,提取局域差別基各子
2011-03-04 20:46:21

基于聯(lián)合頻率分析的特征提取及識別過程

的兩維處理方法,并用于三種數(shù)字信號的特征分析。最后詳細(xì)介紹了基于聯(lián)合頻率分析的特征提取及識別過程,給出了仿真測試結(jié)果。
2021-04-21 06:17:47

多站低頻雷達(dá)運(yùn)動人體微多普勒特征提取與跟蹤技術(shù)【論文干貨】

雷達(dá)系統(tǒng),研究了葉簇穿透人體微多普勒特征提取和跟蹤技術(shù)。目前對于人體微多普勒信號仿真的研究幾乎都是基于單站雷達(dá),雙站雷達(dá)人體微多普勒大小不僅與人體運(yùn)動方向有關(guān),還與雙站角大小有關(guān),雙站雷達(dá)散射截面
2021-12-20 15:49:31

如何提取模擬電路故障診斷中的特征方法?其步驟和優(yōu)缺點(diǎn)是什么?

如何提取模擬電路故障診斷中的特征方法?其步驟和優(yōu)缺點(diǎn)分別是什么?
2021-04-07 06:04:36

如何提取顏色特征?

計(jì)算機(jī)視覺的特征提取算法研究至關(guān)重要。在一些算法中,一個(gè)高復(fù)雜度特征提取可能能夠解決問題(進(jìn)行目標(biāo)檢測等目的),但這將以處理更多數(shù)據(jù),需要更高的處理效果為代價(jià)。而顏色特征無需進(jìn)行大量計(jì)算。只需將數(shù)字圖像中的像素值進(jìn)行相應(yīng)轉(zhuǎn)換,表現(xiàn)為數(shù)值即可。因此顏色特征以其低復(fù)雜度成為了一個(gè)較好的特征
2019-10-12 06:55:23

如何將脈沖耦合神經(jīng)網(wǎng)絡(luò),體視學(xué)等結(jié)合實(shí)現(xiàn)藥材顯微圖像的特征提取

`如何將脈沖耦合神經(jīng)網(wǎng)絡(luò),體視學(xué),F(xiàn)ourier變換,小數(shù)冪指數(shù)濾波器結(jié)合實(shí)現(xiàn)藥材顯微圖像的特征提取?`
2015-04-16 12:25:45

手指靜脈圖像的特征提取和識別前期研究

圖像處理,手指靜脈圖像的特征提取和識別前期研究
2012-05-11 11:51:27

手背靜脈特征提取算法

"特點(diǎn)的基礎(chǔ)上,先將手背靜脈圖像"分塊",再對分塊后的圖像進(jìn)行FRAT變換,并提出一種向量非均衡分布可得最大值的方法,提取手背靜脈圖像紋理特征,最后通過特征匹配進(jìn)行分類識別
2010-04-24 09:58:17

有大神嗎?可以分享一個(gè)LabVIEW指紋特征提取的資料嗎?

有大神嗎?可以分享一個(gè)LabVIEW指紋特征提取的資料嗎?感激不盡。
2017-04-19 07:31:13

模擬電路故障診斷中的特征提取方法

特征從高維特征空間壓縮到低維特征空間,并提取有效故障特征以提高故障診斷率就成了一個(gè)重要的課題。本文將簡要介紹部分模擬電路故障診斷中使用的特征提取方法的原理步驟及其優(yōu)缺點(diǎn),為進(jìn)一步的研究打下
2016-12-09 18:15:39

討論一種模擬電路診斷系統(tǒng)的設(shè)計(jì)方法

本文討論了BP神經(jīng)網(wǎng)絡(luò)在模擬電路故障診斷中的應(yīng)用和故障特征提取方法。
2021-06-04 07:18:50

語音特征參數(shù)提取的仿真研究

語音特征參數(shù)提取的仿真研究
2012-08-20 12:38:27

高分辨率合成孔徑雷達(dá)圖像的直線特征多尺度提取方法

針對傳統(tǒng)的合成孔徑雷達(dá)(SAR)多尺度邊緣提取方法中直線提取連續(xù)性和完整性不好的特點(diǎn),提出了一個(gè)由粗到精的多分辨率SAR圖像直線特征多級提取框架,利用多尺度策略在降低SAR圖像噪聲影響的同時(shí)增強(qiáng)相鄰
2010-05-06 09:04:04

基于改進(jìn)ReliefF算法的主成分特征提取方法

計(jì)算信息特征(屬性)的權(quán)重問題在信息分類及模式匹配中是一個(gè)研究熱點(diǎn)。該文提出一種基于改進(jìn)ReliefF算法的主成分特征提取方法,利用此算法刪除原始特征中與分類不相關(guān)的特征
2009-04-15 10:06:267

基于已知特征項(xiàng)和環(huán)境相關(guān)量的特征提取算法

在現(xiàn)有基于已知特征項(xiàng)特征提取算法的基礎(chǔ)上,提出一種基于已知特征項(xiàng)和環(huán)境相關(guān)量的特征提取算法。該算法通過已知特征項(xiàng)搜索頻繁項(xiàng)集,提高了特征提取速度。環(huán)境相關(guān)量的
2009-04-18 09:37:0117

基于DCT和KDA的人臉特征提取方法

提出了一種新的人臉特征提取方法,該方法采用DCT對人臉圖像進(jìn)行降維和去噪,并通過KDA提取人臉特征?;谠?b class="flag-6" style="color: red">特征,采用NN分類器,對ORL人臉庫進(jìn)行分類識別,僅用28個(gè)特征平均
2009-05-25 22:04:1015

人臉識別系統(tǒng)中的特征提取Feature Extraction

人臉識別是模式識別和機(jī)器視覺領(lǐng)域中的一個(gè)重要課題,其中,特征提取是人臉識別中的一個(gè)重要部分。本文利用邊緣檢測、積分投影及模板匹配等相結(jié)合的方法,比較準(zhǔn)確的
2009-06-04 08:49:0431

基于Fisher的Gabor特征提取方法

提出在Gabor 濾波理論的基礎(chǔ)上,結(jié)合Fisher 線性判別方法,對手寫數(shù)字圖像的所有特征點(diǎn)尋找局部最優(yōu)濾波頻率和濾波方向,從而提取最優(yōu)Gabor 特征方法。對MNIST 手寫體數(shù)據(jù)庫的
2009-06-06 14:15:0912

基于KPCA入侵檢測特征提取技術(shù)研究

詳細(xì)介紹了基于KPCA入侵檢測系統(tǒng)特征提取的工作原理,并在MATLAB環(huán)境下利用KDDCUP99數(shù)據(jù)集進(jìn)行了基于KPCA特征提取的仿真實(shí)驗(yàn),結(jié)果表明KPCA能對樣本能進(jìn)行很好的降維,并可保持
2009-09-23 11:36:4816

SISAR功率譜特征提取方法

SISAR功率譜特征提取方法:文主要研究了對SISAR全息信號功率譜歸一化處理獲得識別特征方法。通過分析側(cè)影成像全息信號和目標(biāo)側(cè)影雷達(dá)截面積的關(guān)系,導(dǎo)出由計(jì)算雷達(dá)截面積的方
2009-10-23 10:26:2112

基于廣義典型相關(guān)分析的仿射不變特征提取方法

基于廣義典型相關(guān)分析的仿射不變特征提取方法:該文結(jié)合廣義典型相關(guān)分析(GCCA)理論,提出了一種新的圖像仿射不變特征提取方法。首先,基于多尺度自卷積變換(MSA)構(gòu)造了一組新
2009-10-29 12:52:5317

基于模糊故障特征信息的隨機(jī)集度量信息融合診斷方法

該文給出一種基于模糊故障特征信息隨機(jī)集度量的信息融合診斷方法。針對信號采集與故障特征提取中的模糊性,首先用模糊隸屬度函數(shù)分別表示故障檔案庫中的多種故障樣板模式
2009-11-13 14:33:0912

基于小波域NMF特征提取的SAR圖像目標(biāo)識別方法

該文提出了一種基于小波域非負(fù)矩陣分解特征提取的合成孔徑雷達(dá)圖像目標(biāo)識別方法。該方法對圖像二維離散小波分解后提取低頻子帶圖像,用非負(fù)矩陣分解對低頻子帶圖像提取
2009-11-21 11:58:4821

模式識別中的特征提取研究

特征提取是模式識別中的關(guān)鍵技術(shù)之一,本文提出了一種基于改進(jìn)ReliefF 算法的主成分特征提取方法,通過該方法進(jìn)行主特征特征提取可以有效降維,大大減輕了后續(xù)的分類器的
2009-12-12 13:47:4527

KPL特征提取在心電識別中的應(yīng)用研究

本文結(jié)合核方法、主元分析(PCA)和線性判別分析(LDA)等機(jī)器學(xué)習(xí)方法,提出了一種特征提取的KPL 方法。本文提出的KPL 方法,能夠保持?jǐn)?shù)據(jù)集的非線性關(guān)系和最優(yōu)分類方向。使用MIT-
2010-01-27 14:02:5118

基于互信息梯度優(yōu)化計(jì)算的信息判別特征提取

該文將互信息梯度優(yōu)化引入特征提取矩陣求解,提出一種信息判別分析的特征提取方法。首先,分析了現(xiàn)有線性判別方法的特點(diǎn)和局限,建立了類條件分布參數(shù)模型下互信息最大化
2010-02-10 12:02:329

基于有效性評價(jià)機(jī)制的小波包特征提取技術(shù)

本文介紹了如何應(yīng)用提升小波包變換對信號進(jìn)行特征提取,并在此基礎(chǔ)上提出了四條定量的評價(jià)標(biāo)準(zhǔn),能夠全面地對此類特征提取方法的有效性進(jìn)行評價(jià)。通過這四個(gè)標(biāo)準(zhǔn),就能更科
2010-02-22 15:34:3317

非線性PCA在表面肌電信號特征提取中的應(yīng)用

非線性PCA在表面肌電信號特征提取中的應(yīng)用 針對表面肌電信號的特點(diǎn),提出了一種應(yīng)用非線性主分量分析( PCA) 提取表面肌電信號特征的新方法. 該方法在表面肌
2010-02-26 17:08:2617

基于主元特征提取的汽輪機(jī)性能監(jiān)測和故障診斷

提出了一種基于主元特征提取的汽輪機(jī)性能監(jiān)測和故障診斷新方法,該方法充分利用了發(fā)電機(jī)的過程數(shù)據(jù)信息,通過計(jì)算監(jiān)控統(tǒng)計(jì)量Hotelling’s T2和SPE來監(jiān)測汽輪機(jī)的運(yùn)行。若T2或SPE統(tǒng)計(jì)
2010-08-05 17:13:4712

基于小波分析的車輛噪聲特征提取方法

   特征提取是聲目標(biāo)識別的關(guān)鍵。由于車輛噪聲信號的非平穩(wěn)特性,傳統(tǒng)特征提取方法有很大局限性。介紹小波分析方法在車輛噪聲信號特征提取中的應(yīng)用,仿真結(jié)果證
2010-12-31 17:16:280

基于小波多尺度和熵在圖像字符特征提取方法的改進(jìn)

摘要:提出了一種基于小波和熵提取圖像字符特征方法。該方法利用小波變換對圖像字符進(jìn)行多尺度分解,用marr零交叉邊緣檢測算子提取邊緣;用基于判別熵最小化提取
2006-03-24 13:30:02669

小波變換在過零調(diào)制信號特征提取中的應(yīng)用

小波變換在過零調(diào)制信號特征提取中的應(yīng)用 介紹小波變換理論和算法,說明去除信號噪聲原理;給出了以db2為小波函數(shù)和選用閾值方法去噪的
2009-10-12 23:47:451446

基于EMD法的語音信號特征提取

特征提取是目標(biāo)識別的關(guān)鍵,如何從有限的測量數(shù)據(jù)中獲取有效、可靠的特征參數(shù),是特征提取中重點(diǎn)考慮的問題。本文采用EMD方法對語音信號進(jìn)行頻率特征提取,可以較好地降低語音
2011-10-10 15:11:4241

基于局部特征匹配的目標(biāo)跟蹤研究

針對目標(biāo)跟蹤中的特征提取和匹配問題進(jìn)行分析,提出了一種基于局部特征匹配的目標(biāo)跟蹤方法,該算法基于Shape Context進(jìn)行特征提取。首先,對現(xiàn)有特征提取算法進(jìn)行簡單介紹,并詳細(xì)
2011-12-06 15:15:0532

紋理特征提取方法

文中主要介紹了基于分形維數(shù)提取法、小波提取法、Gabor濾波器提取法、灰度共生矩陣提取法等紋理特征提取的原理和步驟等,并對各個(gè)方法的優(yōu)、缺點(diǎn)進(jìn)行了歸納總結(jié)。
2012-02-22 11:11:2610

基于Gabor變換的中文字符特征提取方法研究

針對傳統(tǒng)漢字字符特征提取方法的不足,提出了一種基于Gabor變換,對圖像紋理特征的方向性敏感的字符特征提取方法。先將灰度字體圖像進(jìn)行二值化、歸一化處理,再利用Gabor濾波器進(jìn)
2012-08-29 17:10:020

基于奇異值分解的車牌特征提取方法研究

研究了基于小波分析的車牌圖像定位、分割、大小歸一化方法,并分析了奇異值分解算法的數(shù)學(xué)原理和算法。利用奇異值分解作為代數(shù)特征提取方法,獲得圖像的有效特征描述。以Mat
2012-10-17 11:08:0128

基于Gabor的特征提取算法在人臉識別中的應(yīng)用

針對人臉識別中的特征提取問題,提出一種新的基于Gabor的特征提取算法,利用Gabor小波變換良好的提取區(qū)分能力和LDA所具有的判別性優(yōu)勢來進(jìn)行特征提取。首先利用Gabor小波變換來提取人臉特征
2013-01-22 14:25:2654

使用工業(yè)級熱特征提取方法提高大功率半導(dǎo)體的測試與故障診斷速度

使用工業(yè)級熱特征提取方法提高大功率半導(dǎo)體的測試與故障診斷速度
2016-01-06 14:50:210

使用工業(yè)級熱特征提取方法提高大功率半導(dǎo)體的測試與故障診斷速度

使用工業(yè)級熱特征提取方法提高大功率半導(dǎo)體的測試與故障診斷速度
2016-05-24 17:12:500

模擬電路故障診斷中的特征提取方法

特征從高維特征空間壓縮到低維特征空間,并提取有效故障特征以提高故障診斷率就成了一個(gè)重要的課題。本文將簡要介紹部分模擬電路故障診斷中使用的特征提取方法的原理步驟及其優(yōu)缺點(diǎn),為進(jìn)一步的研究打下基礎(chǔ)。
2016-11-28 17:24:264438

脈沖多普勒雷達(dá)特征提取技術(shù)分析

脈沖多普勒雷達(dá)特征提取技術(shù)分析,下來看看,
2016-12-24 23:19:109

基于小波包_包絡(luò)樣本熵的故障特征提取方法及其應(yīng)用_李其龍

基于小波包_包絡(luò)樣本熵的故障特征提取方法及其應(yīng)用_李其龍
2016-12-30 14:37:070

基于最優(yōu)Morlet小波自適應(yīng)包絡(luò)解調(diào)的弱故障特征提取方法

基于最優(yōu)Morlet小波自適應(yīng)包絡(luò)解調(diào)的弱故障特征提取方法_侯新國
2017-01-07 18:21:311

基于加權(quán)多尺度張量子空間的人臉圖像特征提取方法_王仕民

基于加權(quán)多尺度張量子空間的人臉圖像特征提取方法_王仕民
2017-01-08 10:57:061

基于多尺度融合的甲狀腺結(jié)節(jié)圖像特征提取_王昊

基于多尺度融合的甲狀腺結(jié)節(jié)圖像特征提取_王昊
2017-01-08 11:13:290

基于CMF_EEMD的風(fēng)電齒輪箱多故障特征提取

基于CMF_EEMD的風(fēng)電齒輪箱多故障特征提取_王志堅(jiān)
2017-01-08 13:26:490

峭度濾波器用于電機(jī)軸承早期故障特征提取_安國慶

峭度濾波器用于電機(jī)軸承早期故障特征提取_安國慶
2017-01-07 15:17:120

基于粒計(jì)算的空間特征提取及其檢索的研究宋俊雅

基于粒計(jì)算的空間特征提取及其檢索的研究_宋俊雅
2017-03-16 08:00:000

基于線性預(yù)測原理的艙音特征提取與重構(gòu)程道來

基于線性預(yù)測原理的艙音特征提取與重構(gòu)_程道來
2017-03-15 08:00:000

紅外火焰探測信號的特征提取研究_周永杰

紅外火焰探測信號的特征提取研究_周永杰
2017-03-19 11:41:392

時(shí)頻分析的工頻通信信號特征提取

時(shí)頻分析的工頻通信信號特征提取
2017-08-31 10:00:2811

一種對野值魯棒的紋理特征提取方法

紋理是表征圖像的一個(gè)重要特征,它廣泛存在于各類圖像中。紋理圖像的分類在圖像處理、計(jì)算機(jī)視覺和模式識別中有著極其重要的作用。紋理分類的一個(gè)重要研究內(nèi)容是紋理特征提取,期望所提取特征能有效地刻畫紋理
2017-11-02 17:19:382

顏色特征提取方法

計(jì)算機(jī)視覺的特征提取算法研究至關(guān)重要。在一些算法中,一個(gè)高復(fù)雜度特征提取可能能夠解決問題(進(jìn)行目標(biāo)檢測等目的),但這將以處理更多數(shù)據(jù),需要更高的處理效果為代價(jià)。而顏色特征無需進(jìn)行大量計(jì)算。只需將數(shù)字圖像中的像素值進(jìn)行相應(yīng)轉(zhuǎn)換,表現(xiàn)為數(shù)值即可。因此顏色特征以其低復(fù)雜度成為了一個(gè)較好的特征。
2017-11-16 14:12:124191

激光網(wǎng)格標(biāo)記圖像特征提取

的可識別特征。針對激光網(wǎng)格標(biāo)記圖像的特點(diǎn),在隨機(jī)抽樣一致性RANSAC算法的基礎(chǔ)上,提出了像素權(quán)重化和假設(shè)模型預(yù)檢驗(yàn)的方法,用于激光網(wǎng)格標(biāo)記的直線特征提取。實(shí)驗(yàn)結(jié)果表明,該方法不僅克服了RANSAC算法計(jì)算量大和參數(shù)敏感的缺點(diǎn)
2017-11-17 17:26:003

基于ERS/ERD的二級共空間模式特征提取方法

針對多類運(yùn)動想象EEG信號在腦機(jī)接口方面存在分類識別率低和被試者差異性的問題,提出了一種基于ERS/ERD現(xiàn)象的二級共空間模式特征提取方法。首先對全部導(dǎo)聯(lián)進(jìn)行特定頻段的小波包降噪和分解;其次對分
2017-11-20 09:32:094

Curvelet變換用于人臉特征提取與識別

人臉檢測是一個(gè)非常復(fù)雜的模式,人臉面部特征提取及識別成為當(dāng)前計(jì)算機(jī)圖像處理相關(guān)學(xué)科的一個(gè)極具挑戰(zhàn)的課題。而基于Carvelet變換的人臉特征提取及識別的意義在于Curvelet繼承了小波分析優(yōu)良
2017-11-30 15:09:363492

一種去冗余的SIFT特征提取方法

的SIFT特征提取算法。首先提取出SIFT特征點(diǎn),然后根據(jù)特征點(diǎn)周邊梯度情況,判斷特征點(diǎn)是否落于目標(biāo)區(qū)域,進(jìn)而保留目標(biāo)區(qū)域特征點(diǎn),刪除背景區(qū)域特征點(diǎn),減少特征點(diǎn)數(shù)量的同時(shí)也實(shí)現(xiàn)了去冗余。提取所得的特征點(diǎn)質(zhì)量好壞由落入目標(biāo)區(qū)域的點(diǎn)數(shù)和
2017-12-01 15:08:380

小波提取圖像特征方法研究

的細(xì)節(jié)分量有高度的局部相關(guān)性 ,這為特征提取提供了有力的條件。利用小波變換進(jìn)行紋理特征提取 ,在紋理分析、圖像壓縮、工業(yè)品表面缺陷檢測中得到大量的應(yīng)用。
2017-12-01 14:47:5211813

與文本無關(guān)的單訓(xùn)練樣本特征點(diǎn)提取研究

無關(guān)的單訓(xùn)練樣本的特征提取方法。該方法提取的語音特征能夠充分反映說話人的基本發(fā)聲特性,可以很好的將不同的說話者區(qū)分開。本文列出了以上四種特征提取方法在但語音訓(xùn)練樣本上對于不同說話者的識別效果,也將其與本文的方法進(jìn)行了比較。對英文
2017-12-06 14:32:290

基于生物視皮層機(jī)制的視頻運(yùn)動特征提取方法

針對復(fù)雜場景中視頻序列目標(biāo)運(yùn)動特征提取困難的問題,借鑒生物視覺系統(tǒng)對視頻動態(tài)目標(biāo)的運(yùn)動感知機(jī)制,改進(jìn)初級視皮層(VI)細(xì)胞模型,提出一種基于生物視皮層機(jī)制的視頻運(yùn)動特征提取方法。采用
2017-12-18 10:32:301

一種新的語音信號特征提取方法

針對說話人識別系統(tǒng)中存在的有效語音特征提取以及噪聲影V向的問題,提出了一種新的語音特征提取方法基于S變換的美爾倒譜系數(shù)( SMFCC)。該方法是在傳統(tǒng)美爾倒譜系數(shù)(MFCC)的基礎(chǔ)上利用S變換的二維
2017-12-18 11:29:041

非剛性三維模型檢索特征提取技術(shù)研究

三維模型特征描述符是一種簡潔且信息量豐富的表示方式.特征提取是許多三維模型分析處理任務(wù)的關(guān)鍵步驟.近年來。針對非剛性三維模型特征提取技術(shù)的研究引起了人們的廣泛關(guān)注.本文首先匯總了常用的非剛性三維模型
2017-12-19 11:35:380

基于主成分分析方向深度梯度直方圖的特征提取算法

;然后,基于預(yù)設(shè)大小窗口對所獲取的深度圖進(jìn)行邊緣檢測和梯度計(jì)算,獲得區(qū)域形狀直方圖特征并量化;同時(shí)運(yùn)用主成分分析(PCA)進(jìn)行降維;最后,為實(shí)現(xiàn)特征獲取的精確性和完整性,采用滑動窗口檢測方法實(shí)現(xiàn)整幅深度圖的特征提取,并再
2017-12-26 14:32:070

無監(jiān)督行為特征提取算法

針對現(xiàn)有行為特征提取方法識別率低的問題,提出了一種融合稠密光流軌跡和稀疏編碼框架的無監(jiān)督行為特征提取方法( DOF-SC)。首先,在稠密光流(DOF)軌跡提取的基礎(chǔ)上,對以軌跡為中心的原始圖像塊進(jìn)行
2017-12-26 18:48:520

基于SF-LBP的行人紋理特征提取算法

針對基于紋理信息的行人特征提取算法中存在特征信息冗余度大,無法刻畫人眼視覺敏感性的不足,提出一種融合人類視覺感知特性的基于顯著性局部二值模式( SF-LBP)的行人紋理特征提取算法。該算法首先
2017-12-29 15:06:580

基于小波脊線的特征提取算法

捕獲問題,并對其特征參數(shù)提取算法進(jìn)行了研究。針對跳頻信號的特征提取研究了一種基于小波脊線的特征提取算法,通過matlab仿真實(shí)驗(yàn)對方法的性能進(jìn)行了驗(yàn)證,實(shí)驗(yàn)表明基于小波脊線的特征提取算法有很大的性能優(yōu)勢,進(jìn)一步提
2018-01-04 14:04:490

基于HTM架構(gòu)的時(shí)空特征提取方法

針對人體動作識別中時(shí)空特征提取問題,提出一種基于層次時(shí)間記憶( HTM)架構(gòu)的深度學(xué)習(xí)模型,用來提取圖像幀的時(shí)空特征。將圖像幀構(gòu)建成樹型節(jié)點(diǎn)層次結(jié)構(gòu),在每一層中,通過歐氏距離分組來提取圖像樣本的空間
2018-01-17 17:27:250

觸電信號暫態(tài)特征提取故障識別

針對傳統(tǒng)剩余電流保護(hù)裝置只能監(jiān)測到總泄漏電流信號大小,但不能根據(jù)監(jiān)測到的總泄漏電流信號自動分類和識別觸電類型,提出了一種基于統(tǒng)計(jì)特征參數(shù)與支持向量機(jī)的觸電信號暫態(tài)特征提取故障類型識別的新方法
2018-01-23 17:12:594

CNN與人工特征提取快速識別斑馬線的方法

斑馬線識別方法研究對車載和導(dǎo)盲系統(tǒng)具有極其重要的作用,為了解決目前識別斑馬線的方法精確度低、所需時(shí)間長等問題,本文提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)與人工特征提取相結(jié)合的快速識別斑馬線方法,卷積神經(jīng)網(wǎng)絡(luò)
2018-02-24 15:52:136

液壓泵振動信號特征提取方法

針對液壓泵故障特征提取問題,提出了一種基于奇異值分解和小波包變換的液壓泵振動信號特征提取方法。通過奇異值分解將噪聲非均勻分布的液壓泵振動信號正交分解為噪聲分布相對均勻的分量,對各分量進(jìn)行小波包閾值
2018-03-05 14:07:530

如何提高愛好特征提取的效率詳細(xì)算法說明

針對電影評分中特征提取效率較低的問題,提出了與QR分解相結(jié)合的Nystrom方法。首先,利用自適應(yīng)方法進(jìn)行采樣,然后對內(nèi)部矩陣進(jìn)行QR分解,將分解后的矩陣與內(nèi)部矩陣進(jìn)行重新組合并進(jìn)行特征分解
2019-01-04 09:36:191

圖像邊緣檢測和特征提取實(shí)驗(yàn)報(bào)告的詳細(xì)資料說明

本文檔的主要內(nèi)容詳細(xì)介紹的是圖像邊緣檢測和特征提取實(shí)驗(yàn)報(bào)告的詳細(xì)資料說明目的包括了:1.了解圖像邊緣檢測的原理。自己實(shí)現(xiàn)邊緣檢測算法,對特定的幾幅圖像進(jìn)行邊緣檢測,并達(dá)到較好的效果。2.了解特征提取的原理,并對圖像中存在的一些特征進(jìn)行特征提取
2019-04-19 08:00:002

模擬電路診斷中故障特征提取方法

模擬電路故障診斷本質(zhì)上等價(jià)于模式識別問題,因此研究如何把電路狀態(tài)的原始特征從高維特征空間壓縮到低維特征空間,并提取有效故障特征以提高故障診斷率就成了一個(gè)重要的課題。
2020-01-26 09:31:002437

基于Labview的語音模式識別MFCC原理特征提取

本文檔的主要內(nèi)容詳細(xì)介紹的是基于Labview的語音模式識別MFCC原理特征提取
2020-01-09 08:00:0038

語音識別算法有哪些_語音識別特征提取方法

本文主要闡述了語音識別算法及語音識別特征提取方法。
2020-04-01 09:24:4929661

機(jī)器學(xué)習(xí)之特征提取 VS 特征選擇

是DimensionalityReduction(降維)的兩種方法,針對于the curse of dimensionality(維災(zāi)難),都可以達(dá)到降維的目的。但是這兩個(gè)有所不同。 特征提取(Feature Extraction
2020-09-14 16:23:203733

淺析特征提取網(wǎng)絡(luò)與特征融合技術(shù)

導(dǎo)讀鑒于顯著性目標(biāo)和偽裝目標(biāo)研究的相似性,本文作者將顯著性目標(biāo)與偽裝目標(biāo)合在一起進(jìn)行研究,文章重點(diǎn)是特征提取網(wǎng)絡(luò)與特征融合技術(shù),主要介紹了三種方法EGNet,PFANet和SINet。
2021-03-12 10:13:579586

一種面向鐵路文本分類的字符級特征提取方法

鐵路文本分類對于我國鐵路事業(yè)的發(fā)展具有重要的實(shí)用意義?,F(xiàn)有的中文文本特征提取方法依賴于事先對文本的分詞處理,然而面向鐵路文本數(shù)據(jù)進(jìn)行分詞的準(zhǔn)確率不髙,導(dǎo)致鐵路文本的特征提取存在語乂理解不充分、特征
2021-04-08 14:19:5910

一種基于信息熵與綜合函數(shù)特征提取

詞集間相互關(guān)系的平均一階依賴貝葉斯模型(AODE)分類器的分類方法對計(jì)算機(jī)漏洞描述信息進(jìn)行文本分類。首先,利用S-C特征提取提取特征詞。通過結(jié)合詞語的類間重要程度和類內(nèi)重要程度的綜合函數(shù)C,計(jì)算出詞語對于類別的重要程度。再利用詞
2021-04-13 13:51:153

基于自編碼特征的語音聲學(xué)綜合特征提取

利用監(jiān)督性學(xué)習(xí)算法進(jìn)行語音増強(qiáng)時(shí),特征提取是至關(guān)重要的步驟。現(xiàn)有的組合特征和多分辨率特征等聽覺特征是常用的聲學(xué)特征,基于這些特征的増強(qiáng)語音雖然可懂度得到了較大提升,但是仍然殘留大量噪聲,語音
2021-05-19 16:33:1026

一種基于嵌入式特征提取的多標(biāo)記分類算法

基于單標(biāo)記分類的降維及特征選擇方法難以直接運(yùn)用到多標(biāo)記學(xué)習(xí)中,而將多標(biāo)記學(xué)習(xí)問題獨(dú)立分解為多個(gè)單標(biāo)記學(xué)習(xí)問題再進(jìn)行降維會丟失標(biāo)記的相關(guān)性信息。為此,提出一種基于嵌入式特征提取的多標(biāo)記分類算法
2021-05-24 15:31:144

基于嵌入式特征提取的多標(biāo)記分類算法

基于嵌入式特征提取的多標(biāo)記分類算法說明。
2021-06-04 10:18:407

基于特征提取和密度聚類的鋼軌識別算法

速度。為解決上述問題,文中提出一種基于擴(kuò)展Har特征提取和 DBSCAN密度聚類的鋼軌識別算法。首先通過仿射變換、池化、灰度均衡仳、邊緣檢測等算法對圖像進(jìn)行預(yù)處理,然后基于擴(kuò)展Haar特征提取圖像中鋼軌的特征點(diǎn),最后利用 DBSCAN算法對特
2021-06-16 15:03:495

基于特征的基圖像提取和重構(gòu)方法

圖像。使用特征提取算法從訓(xùn)練集圖像中分解岀一系列基圖像,闡述了基圖像分解和提取的算法流程,通過將測試集圖像投影到k個(gè)基圖像枃成的空間中得到投影系數(shù),建立由投影系數(shù)和基圖像重構(gòu)原圖像的方法和過程。實(shí)驗(yàn)結(jié)果表眀,通過控
2021-06-16 16:01:254

基于中軸變換的改進(jìn)骨架特征提取方法

基于中軸變換的改進(jìn)骨架特征提取方法
2021-06-27 15:38:1925

計(jì)算機(jī)視覺中不同的特征提取方法對比

特征提取是計(jì)算機(jī)視覺中的一個(gè)重要主題。不論是SLAM、SFM、三維重建等重要應(yīng)用的底層都是建立在特征點(diǎn)跨圖像可靠地提取和匹配之上。特征提取是計(jì)算機(jī)視覺領(lǐng)域經(jīng)久不衰的研究熱點(diǎn),總的來說,快速、準(zhǔn)確、魯棒的特征點(diǎn)提取是實(shí)現(xiàn)上層任務(wù)基本要求。
2022-07-11 10:28:142287

高光譜圖像特征提取方法綜述

高光譜遙感技術(shù)具有能同時(shí)反映遙感對象空間特征和光譜特征等獨(dú)特優(yōu)勢,但這些優(yōu)勢也帶來了波段眾多 且相關(guān)性強(qiáng)、數(shù)據(jù)冗余度高、不利于進(jìn)一步處理與利用等問題。 通過降維可以減少數(shù)據(jù)中的冗余信息,提高處理效率, 而特征提取作為降維的一種重要方法,具有降維速度快等優(yōu)點(diǎn)。 因此,特征提取對高光譜圖像的利用有重要意義。
2022-09-26 13:53:003779

高光譜影像顯著性特征提取方法

最終用于分類的顯著性特征。如圖1所示,3個(gè)相鄰波段的高光譜影像顯著性特征提取主要包括超像素分割、對比度計(jì)算和顯著性分配3個(gè)步驟。 1、SLIC超像素分割 基于像素的視覺顯著性估計(jì)方法對噪聲較為敏感,而超像素以相對簡單的
2023-01-12 09:45:55931

已全部加載完成