本文探討了在SiC MOSFET應(yīng)用中需要考慮的可能致使功率器件處于雪崩狀態(tài)的工作條件。
2020-08-10 17:11:001712 挑戰(zhàn)散熱性能的局限:良好的散熱性對(duì)大電流直流電感的功能的改善作用。
2021-07-01 14:29:243807 雪崩強(qiáng)度是MOSFET的一種特性。在MOSFET的漏極和源極之間施加超過VDSS的電壓,但是MOSFET的性能沒有被破壞。此時(shí)施加在其上的能量稱為雪崩能量[Avalanche energy],流過的電流稱為雪崩電流[Avalanche current]。有些MOSFET的spec中不保證雪崩能力。
2023-08-31 10:18:24502 在關(guān)斷狀態(tài)下,功率MOSFET的體二極管結(jié)構(gòu)的設(shè)計(jì)是為了阻斷最小漏極-源極電壓值。MOSFET體二極管的擊穿或雪崩表明反向偏置體二極管兩端的電場(chǎng)使得漏極和源極端子之間有大量電流流動(dòng)。典型的阻斷狀態(tài)漏電流在幾十皮安到幾百納安的數(shù)量級(jí)。
2024-02-23 09:38:53343 當(dāng)功率器件承受的雪崩耐量超過極限后,芯片最終會(huì)損壞,然而單脈沖雪崩與重復(fù)雪崩的失效機(jī)理并不相同。
2024-02-25 15:48:081123 功率MOSFET的雪崩損壞有三種模式:熱損壞、寄生三極管導(dǎo)通損壞和VGS尖峰誤觸發(fā)導(dǎo)通損壞。
2024-02-25 16:16:35487 8引腳LLP散熱性能和設(shè)計(jì)指南The new leadless leadframe package (LLP) provides significantlyincreased power
2009-01-13 18:25:45
雪崩能量)中電感器增加的尺寸抵消,這樣的話,盡管電流減少了,這個(gè)值實(shí)際上是增加了。表1中說明了這個(gè)關(guān)系,其中列出了從測(cè)試中的TI CSD18502KCS 60V NexFET? 功率MOSFET器件中
2018-09-05 15:37:26
電子表格記錄數(shù)據(jù)的經(jīng)驗(yàn)豐富的設(shè)計(jì)人員,亦未能從熟悉的模型中獲得滿意的結(jié)果。除了器件結(jié)構(gòu)和加工工藝,MOSFET的性能還受其他幾個(gè)周圍相關(guān)因素的影響。這些因素包括封裝阻抗、印刷電路板(PCB)布局、互連線寄生
2019-05-13 14:11:31
功率BJT具有理想的導(dǎo)通狀態(tài)傳導(dǎo)性能;然而,它們是電流控制器件,需要復(fù)雜的基極驅(qū)動(dòng)電路。由于功率MOSFET是電壓控制器件,我們需要更簡(jiǎn)單的驅(qū)動(dòng)電路。然而,功率MOSFET的主要挑戰(zhàn)是其導(dǎo)通電阻隨著
2023-02-24 15:29:54
LTM8047 采用耐熱性能增強(qiáng)型、緊湊 (11.25mm x 9mm x 4.92mm) 模壓樹脂球柵陣列 (BGA) 封裝,包括變壓器 ,控制電路和電源開關(guān)等所有元件均配置于這個(gè)小型封閉的 BGA封裝中,為高振動(dòng)應(yīng)用提供卓越的互連可靠性。
2019-09-17 09:11:44
上產(chǎn)生的電壓超過MOSFET擊穿電壓后,將導(dǎo)致雪崩擊穿。雪崩擊穿發(fā)生時(shí),即使 MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì)流過MOSFET器件。電感上所儲(chǔ)存的能量與雜散電感上存儲(chǔ),由MOSFET消散
2020-07-23 07:23:18
產(chǎn)生的電壓超過MOSFET擊穿電壓后,將導(dǎo)致雪崩擊穿。雪崩擊穿發(fā)生時(shí),即使 MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì)流過MOSFET器件。電感上所儲(chǔ)存的能量與雜散電感上存儲(chǔ),由MOSFET消散
2019-08-20 07:00:00
更高的降額。但這是以雪崩等級(jí)、SOA、柵極電荷和泄漏性能等其他因素為代價(jià)的。在許多 MOSFET 中,硅結(jié)構(gòu)會(huì)使元胞之間單元間距變窄,以實(shí)現(xiàn)低導(dǎo)通電阻,但是會(huì)影響 SOA 變?nèi)醪⒔档?b class="flag-6" style="color: red">雪崩能量。因此
2022-10-28 16:18:03
的基礎(chǔ)。MOSFET設(shè)計(jì)的改進(jìn)可使電路設(shè)計(jì)者充分發(fā)揮改進(jìn)器件的性能,比如開關(guān)性能的提高和其他幾個(gè)關(guān)鍵參數(shù)的改善,可確保轉(zhuǎn)換器能夠更高效地運(yùn)行。某些情況下,還可對(duì)設(shè)計(jì)的電路進(jìn)行修改。若不采用這些改進(jìn)
2018-12-07 10:21:41
的隱患。謹(jǐn)慎處理 PCB 布局、板結(jié)構(gòu)和器件貼裝有助于提高中高功耗應(yīng)用的散熱性能?! ∫浴 “雽?dǎo)體制造公司很難控制使用其器件的系統(tǒng)。但是,安裝IC的系統(tǒng)對(duì)于整體器件性能而言至關(guān)重要。對(duì)于定制 IC
2018-09-12 14:50:51
4.3 兩個(gè)LFPAK器件 第4.3節(jié)考慮了安裝在PCB板上的單個(gè)器件的熱性能。這個(gè)實(shí)驗(yàn)設(shè)計(jì)的復(fù)雜程度是安裝在PCB上的兩個(gè)器件,我們將在其中觀察器件間距對(duì)Tj的影響。為了將變量的數(shù)量限制在
2023-04-21 14:55:08
關(guān)斷器件。這會(huì)大大延遲關(guān)斷,從而增加MOSFET的功率損耗,降低轉(zhuǎn)換效率。此外,雜散電感可導(dǎo)致電路中出現(xiàn)超過器件電壓額定值的電壓尖峰,從而導(dǎo)致出現(xiàn)故障?! ≈荚诮档碗娮韬吞嵘?b class="flag-6" style="color: red">熱性能的封裝改進(jìn)還可極大
2018-09-12 15:14:20
應(yīng)用提供高性能射頻以及微波晶體管并不是一個(gè)大挑戰(zhàn),該公司的產(chǎn)品在特性、封裝以及應(yīng)用工程方面具有明顯優(yōu)勢(shì)。飛思卡爾半導(dǎo)體在生產(chǎn)及銷售分立和集成射頻半導(dǎo)體器件方面具有雄厚實(shí)力。該公司采用HV7工藝的第七代
2019-07-09 08:17:05
MOSFET ,是許多應(yīng)用的優(yōu)雅解決方案。然而,SiC功率器件的圣杯一直是MOSFET,因?yàn)樗c硅IGBT的控制相似 - 但具有前述的性能和系統(tǒng)優(yōu)勢(shì)。 SiC MOSFET的演變 SiC MOSFET存在
2023-02-27 13:48:12
器件。雪崩堅(jiān)固耐用評(píng)估SiC MOSFET的另一個(gè)重要參數(shù)是雪崩耐用性,通過非鉗位感應(yīng)開關(guān)(UIS)測(cè)試進(jìn)行評(píng)估。雪崩能量顯示MOSFET能夠承受驅(qū)動(dòng)感性負(fù)載時(shí)有時(shí)會(huì)產(chǎn)生的瞬態(tài)。Littelfuse
2019-07-30 15:15:17
與硅相比,SiC有哪些優(yōu)勢(shì)?SiC器件與硅器件相比有哪些優(yōu)越的性能?碳化硅器件的缺點(diǎn)有哪些?
2021-07-12 08:07:35
導(dǎo)通電阻,提供出色的開關(guān)性能,并在雪崩和換向模式下承受高能量脈沖。 這些器件非常適合于高效開關(guān)模式電源,基于半橋拓?fù)涞挠性垂β室驍?shù)校正。推薦產(chǎn)品:TSD5N65M;TSU5N65M;TSD5N50MR
2020-04-30 15:13:55
值標(biāo)定的是器件可以安全吸收反向雪崩擊穿能量的高低。當(dāng)雪崩擊穿發(fā)生時(shí),即使MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì)流過MOSFET器件,電感上所儲(chǔ)存的能量將全部通過MOSFET進(jìn)行釋放,該值不能大于
2019-08-29 10:02:12
MOSFET作為主要的開關(guān)功率器件之一,被大量應(yīng)用于模塊電源。了解MOSFET的損耗組成并對(duì)其分析,有利于優(yōu)化MOSFET損耗,提高模塊電源的功率;但是一味的減少MOSFET的損耗及其他方面的損耗
2019-09-25 07:00:00
,最終提高器件的穩(wěn)健性。對(duì)最終用戶而言,這意味著要在系統(tǒng)中采用更大的封裝件。第四步:決定開關(guān)性能 選擇MOSFET的最后一步是決定MOSFET的開關(guān)性能。影響開關(guān)性能的參數(shù)有很多,但最重要的是柵極/漏
2019-09-04 07:00:00
項(xiàng)目名稱:SiC mosfet 測(cè)試試用計(jì)劃:申請(qǐng)理由:公司開發(fā)雙脈沖測(cè)試儀對(duì)接觸到Sic相關(guān)的資料。想通過此次試用進(jìn)一步了解相關(guān)性能。試用計(jì)劃:1、測(cè)試電源輸入輸出性能。2、使用公司設(shè)備測(cè)試Sic器件相關(guān)參數(shù)。3、編寫測(cè)試報(bào)告。
2020-04-21 15:54:54
項(xiàng)目名稱:SiC MOSFET元器件性能研究試用計(jì)劃:申請(qǐng)理由本人在半導(dǎo)體失效分析領(lǐng)域有多年工作經(jīng)驗(yàn),熟悉MOSET各種性能和應(yīng)用,掌握各種MOSFET的應(yīng)用和失效分析方法,熟悉MOSFET的主要
2020-04-24 18:09:12
產(chǎn)生的電壓超過MOSFET擊穿電壓后,將導(dǎo)致雪崩擊穿。雪崩擊穿發(fā)生時(shí),即使 MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì)流過MOSFET器件。電感上所儲(chǔ)存的能量與雜散電感上存儲(chǔ),由MOSFET消散
2019-11-15 07:00:00
?記住,輸出電流熱衰減與器件的熱性能相關(guān)。二者密切相關(guān),同等重要。
● 效率考慮
是的,效率不是第一考慮因素。獨(dú)立使用時(shí),效率結(jié)果可能無法準(zhǔn)確體現(xiàn)DC-DC調(diào)節(jié)器的熱特性。當(dāng)然,效率值對(duì)于計(jì)算輸入電流
2019-07-22 06:43:05
信號(hào)源型號(hào)前面有幾個(gè)字母,你知道他們代表什么意思嗎?任意波形發(fā)生器(AFG)相關(guān)性能指標(biāo)有哪些?
2021-04-09 06:02:25
傳感器性能如何支持狀態(tài)監(jiān)控解決方案?
2021-01-28 06:51:45
光子學(xué)是什么?納米光子學(xué)又是什么?光子器件與電子器件的性能有哪些不同?
2021-08-31 06:37:56
有些功率MOSFET的數(shù)據(jù)表中列出了重復(fù)雪崩電流IAR和重復(fù)雪崩能量EAR,同時(shí)標(biāo)注了測(cè)量條件,通常有起始溫度25C,最高結(jié)溫150C或者175C,以及電感值、脈沖寬度和脈沖頻率,這些測(cè)量的條件
2017-09-22 11:44:39
【作者】:王丹;關(guān)艷霞;【來源】:《電子設(shè)計(jì)工程》2010年02期【摘要】:介紹功率器件的發(fā)展情況,隨后分析比較SJMOSFET與FS-IGBT兩種器件的工作原理及其性能特征,SJMOS-FET具有
2010-04-24 09:01:39
0.5Ω,內(nèi)部柵極電阻為0.5Ω。 功率模塊的整體熱性能也很重要。碳化硅芯片的功率密度高于硅器件。與具有相同標(biāo)稱電流的硅IGBT相比,SiC MOSFET通常表現(xiàn)出顯著較低的開關(guān)損耗,尤其是在部分
2023-02-20 16:29:54
從而發(fā)生損壞。不同于三極管和IGBT,功率MOSFET具有抗雪崩的能力,而且很多大的半導(dǎo)體公司功率MOSFET的雪崩能量在生產(chǎn)線上是全檢的、100%檢測(cè),也就是在數(shù)據(jù)中這是一個(gè)可以保證的測(cè)量值,雪崩電壓
2019-04-04 06:30:00
可滿足高性能數(shù)字接收機(jī)動(dòng)態(tài)性能要求的ADC和射頻器件有哪些?
2021-05-28 06:45:13
消除二極管整流器件正向壓降來大幅降低功率損耗。N溝道MOSFET具有小RDSON,并且它們相關(guān)的壓降也是最小的。表1中是一個(gè)5A (I_rms = 3.5A) 二極管整流器與一個(gè)10m
2018-05-30 10:01:53
如何提高VMMK器件的性能?
2021-05-21 06:35:39
元器件的合理布局提高敏感器件的抗干擾性能
2021-02-19 07:05:29
隨著設(shè)備尺寸的縮小,工程師正在尋找縮小DCDC電源設(shè)計(jì)解決方案的方法。如何縮小電源芯片設(shè)計(jì)并解決由此產(chǎn)生的熱性能挑戰(zhàn)?
2021-09-29 10:38:37
MOSFET將被用作平臺(tái)主用開關(guān)器件,以驗(yàn)證最新推出的TO247 4引腳封裝MOSFET優(yōu)于傳統(tǒng)的TO247封裝的開關(guān)性能和柵極控制能力。 圖4所示為傳統(tǒng)的TO247封裝(上)和最新推出的TO247 4引腳封裝
2018-10-08 15:19:33
4.3 單個(gè)LFPAK器件?! ”竟?jié)將檢查影響單個(gè)LFPAK器件在不同配置的pcb上的熱性能的因素。從這一點(diǎn)開 始,當(dāng)討論疊層或結(jié)構(gòu)從器件中去除熱量的能力時(shí),使用短語“熱性能”。為了全面了解
2023-04-20 16:54:04
微控制器功能部件是怎樣影響能量消耗和性能的?EnergyBench能量基準(zhǔn)測(cè)試方法的原理是什么?外部存儲(chǔ)器對(duì)能量消耗的影響是什么?
2021-04-14 06:36:14
用高性能的FPGA器件設(shè)計(jì)符合自己需要的DDS電路有什么好的解決辦法嗎?
2021-04-08 06:23:09
看懂MOSFET數(shù)據(jù)表,第1部分—UIS/雪崩額定值自從20世紀(jì)80年代中期在MOSFET 數(shù)據(jù)表中廣泛使用的以來,無鉗位電感開關(guān) (UIS) 額定值就已經(jīng)被證明是一個(gè)非常有用的參數(shù)。雖然不建議在
2022-11-18 06:39:27
雪崩能量)中電感器增加的尺寸抵消,這樣的話,盡管電流減少了,這個(gè)值實(shí)際上是增加了。表1中說明了這個(gè)關(guān)系,其中列出了從測(cè)試中的TICSD18502KCS 60V NexFET? 功率MOSFET器件中搜集
2015-11-19 15:46:13
眾所周知,在器件中添加散熱過孔通常會(huì)提高器件的熱性能,但是很難知道有多少散熱過孔能提供最佳的解決方案?! ★@然,我們不希望添加太多的散熱過孔,如果它們不能顯著提高熱性能,因?yàn)樗鼈兊拇嬖诳赡軙?huì)在PCB組裝
2023-04-20 17:19:37
如何設(shè)計(jì)出一個(gè)具有較高熱性能的系統(tǒng)?
2021-04-23 06:05:29
討論如何根據(jù)RDS(ON)、熱性能、雪崩擊穿電壓及開關(guān)性能指標(biāo)來選擇正確的MOSFET?! ?b class="flag-6" style="color: red">MOSFET的選擇 MOSFET有兩大類型:N溝道和P溝道。在功率系統(tǒng)中,MOSFET可被看成電氣開關(guān)。當(dāng)在
2011-08-17 14:18:59
的基本部件,工程師需要深入了解它的關(guān)鍵特性及指標(biāo)才能做出正確選擇。本文將討論如何根據(jù)RDS(ON)、熱性能、雪崩擊穿電壓及開關(guān)性能指標(biāo)來選擇正確的MOSFET。MOSFET的選擇MOSFET有兩大類
2012-10-30 21:45:40
的基本部件,工程師需要深入了解它的關(guān)鍵特性及指標(biāo)才能做出正確選擇。本文將討論如何根據(jù)RDS(ON)、熱性能、雪崩擊穿電壓及開關(guān)性能指標(biāo)來選擇正確的MOSFET。MOSFET的選擇MOSFET有兩大類
2012-10-31 21:27:48
平坦的白噪聲占主導(dǎo)地位。
總的來說,閃爍噪聲可能對(duì)MOSFET的頻率穩(wěn)定性、相位噪聲、總體性能等產(chǎn)生負(fù)面影響。然而,具體的性能影響會(huì)取決于噪聲的強(qiáng)度以及器件和電路的其他具體設(shè)計(jì)參數(shù)。
2023-09-01 16:59:12
本文以TGA、DSC研究了自制酵溶自牯漆包線裱的熱性能。篩選出T =158 1l℃聚酰胺材料為研制本捧的理想材質(zhì)。五個(gè)漆樣的固化溫度范菌為207 6—224 71℃ ,耐熱極限溫度范圍為359 6—39
2009-06-26 15:53:0131 DC/DC輻照損傷與VDMOS器件1/f噪聲相關(guān)性研究
大量的研究表明,低頻噪聲除了與產(chǎn)品性能有關(guān)之外,還與產(chǎn)品質(zhì)量和可靠性密切相關(guān)。國內(nèi)外出現(xiàn)了一系列使用低頻噪聲特別是1
2009-04-20 10:55:49759
功率MOSFET雪崩擊穿問題分析
摘要:分析了功率MOSFET雪崩擊穿的原因,以及MOSFET故障時(shí)能量耗散與器件溫升的關(guān)系。和傳統(tǒng)的
2009-07-06 13:49:385513 飛兆半導(dǎo)體推出MOSFET器件FDMC7570S
飛兆半導(dǎo)體公司(Fairchild Semiconductor)推出具高效率和出色熱性能,并有助實(shí)現(xiàn)更薄、更輕和更緊湊的電源解決方案的MOSFET產(chǎn)品系列,可應(yīng)
2010-03-05 10:32:531022 MOSFET的UIS及雪崩能量解析
在功率MOSFET的數(shù)據(jù)表中,通常包括單脈沖雪崩能量EAS,雪崩
2010-04-26 18:19:135530 永磁驅(qū)動(dòng)電機(jī)接線盒結(jié)構(gòu)優(yōu)化熱性能分析_丁樹業(yè)
2017-01-08 13:49:170 雙位wdfn6506an器件封裝的概述,墊模式,評(píng)價(jià)板布局和熱性能。 概述 wdfn6平臺(tái)提供了一個(gè)通用性使無論是單或雙半導(dǎo)體器件在無引線封裝內(nèi)實(shí)現(xiàn)。圖1說明了一個(gè)雙位wdfn 6半導(dǎo)體器件封裝和引腳描述。半蝕刻引線框架的補(bǔ)充模具鎖功能允許這種無鉛封裝提供用于優(yōu)異導(dǎo)熱性的暴露排
2017-05-11 17:29:553 本文分析了基于COB技術(shù)的LED的散熱性能,對(duì)使用該方法封裝的LED器件做了等效熱阻分析和紅外熱像實(shí)驗(yàn),結(jié)果表明:采用COB技術(shù)封裝制成的LED器件縮短了散熱通道、增大了散熱面積、減小了熱阻,從而提高了LED的散熱性能,對(duì)LED器件的各方面性能起到良好的作用,延長(zhǎng)了使用壽命。
2018-01-16 14:22:365878 本文使用Mega16單片機(jī)作為開展研究的載體,以希爾伯特黃變換濾波技術(shù)在相關(guān)性能量分析攻擊中的應(yīng)用為主線,對(duì)如何通過HHT預(yù)處理技術(shù)來提高CPA攻擊的效率進(jìn)行了深入研究。與傳統(tǒng)的CPA攻擊方法
2018-01-30 11:18:401 考慮器件的雪崩能量,電壓尖峰所集中的能量主要由電感和電流所決定,因此對(duì)于反激的應(yīng)用場(chǎng)合,電路關(guān)斷時(shí)會(huì)產(chǎn)生較大的電壓尖峰。通常的情況下,功率器件都會(huì)降額,從而留有足夠的電壓余量,但是一些電源在輸出短路
2018-06-20 12:06:5412436 理解MOSFET數(shù)據(jù)手冊(cè)中的雪崩能量等級(jí)
2018-08-16 01:54:003493 音頻放大器視頻分為上下兩期,在本期視頻中將會(huì)為大家分析D類、DG類音頻放大器的工作原理,及MAX98090的相關(guān)性能。
2018-10-12 03:30:004852 LTM4644效率和熱性能_zh
2019-08-13 06:17:006162 本文將探討如何在雪崩工作條件下評(píng)估 SiC MOSFET 的魯棒性。MOSFET 功率變換器,特別是電動(dòng)汽車驅(qū)動(dòng)電機(jī)功率變換器,需要能夠耐受一定的工作條件。如果器件在續(xù)流導(dǎo)通期間出現(xiàn)失效或柵極驅(qū)動(dòng)命令信號(hào)錯(cuò)誤,就會(huì)致使變換器功率開關(guān)管在雪崩條件下工作。
2020-08-09 10:33:001724 本節(jié)將檢查影響單個(gè)LFPAK器件在不同配置的pcb上的熱性能的因素。從這一點(diǎn)開 始,當(dāng)討論疊層或結(jié)構(gòu)從器件中去除熱量的能力時(shí),使用短語“熱性能”。為了全面了解影響熱性能的因素,我們將從最簡(jiǎn)單的一層疊層的PCB開始,然后系統(tǒng)地向PCB中添加更多的層。
2020-10-10 11:34:191889 大電流 LDO 應(yīng)用具增強(qiáng)的熱性能以減少了熱點(diǎn)
2021-03-20 17:20:186 AN110-LTM4601 DC/DC u模塊熱性能
2021-04-16 09:12:216 電子發(fā)燒友網(wǎng)為你提供功率器件熱性能的主要參數(shù)資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計(jì)、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-04-27 08:49:209 土壤溫度水分速測(cè)儀相關(guān)性能特點(diǎn)介紹。土壤溫度水分速測(cè)儀【恒美HM-SW】是現(xiàn)代農(nóng)業(yè)生產(chǎn)中推廣使用較為廣泛的一款測(cè)土儀器,我們知道土壤中的養(yǎng)分、水分、溫度都是影響作物正常生長(zhǎng)的關(guān)鍵指標(biāo),了解土壤溫濕度
2021-04-30 17:52:36362 AN103-LTM4600 DC/DC組件熱性能
2021-05-10 08:05:165 一些功率半導(dǎo)體器件設(shè)計(jì)為在有限時(shí)間內(nèi)承受一定量的雪崩電流,因此可以達(dá)到雪崩額定值。其他人會(huì)在雪崩開始后很快失敗。性能差異源于特定的設(shè)備物理、設(shè)計(jì)和制造。
2021-06-23 14:28:222238 《車用插接器電熱性能仿真分析》論文pdf
2021-12-03 17:28:363 看懂MOSFET數(shù)據(jù)表,第1部分—UIS/雪崩額定值
2022-11-03 08:04:454 600V SPM? 2 系列熱性能(通過安裝扭矩)
2022-11-15 20:04:030 功率器件作為電力電子裝置的核心器件,其在設(shè)計(jì)使用過程中的魯棒性能一直是工程師關(guān)心的問題,雪崩能力其中一個(gè)很重要的指標(biāo),如何理解雪崩,單次雪崩和重復(fù)雪崩是如何定義的,以及雪崩會(huì)帶來哪些危害
2023-02-06 13:54:242408 關(guān)鍵要點(diǎn):在PCB實(shí)際安裝狀態(tài)下,隨著銅箔面積的增加,熱量變得更容易擴(kuò)散,因而能夠提高散熱性能。如果銅箔面積過小,PMDE的Rth(j-a)會(huì)比PMDU還大,從而無法充分發(fā)揮出散熱性能。
2023-02-10 09:41:07494 當(dāng)向MOSFET施加高于絕對(duì)最大額定值BVDSS的電壓時(shí),就會(huì)發(fā)生擊穿。當(dāng)施加高于BVDSS的高電場(chǎng)時(shí),自由電子被加速并帶有很大的能量。這會(huì)導(dǎo)致碰撞電離,從而產(chǎn)生電子-空穴對(duì)。這種電子-空穴對(duì)呈雪崩
2023-02-13 09:30:071298 DFN 封裝的熱性能-AN90023_ZH
2023-02-16 21:17:480 DFN 封裝的熱性能-AN90023
2023-02-17 19:10:101 現(xiàn)代 DC-DC 轉(zhuǎn)換器使用集成 MOSFET 的 PWM 控制器來實(shí)現(xiàn) DC-DC 模塊的最高功率密度。由于功率MOSFET位于PWM芯片內(nèi)部,因此它們會(huì)顯著影響器件的熱性能。因此,為了獲得最佳
2023-04-11 10:52:21591 本篇是讀懂MOSFET datasheet系列第二篇,主要介紹電性能相關(guān)的參數(shù)。 這部分的參數(shù)是我們經(jīng)常提到并且用到的,相關(guān)的參數(shù)如下表所示。
2023-04-26 17:50:102213 本篇是讀懂MOSFET datasheet系列最終篇,主要介紹MOSFET動(dòng)態(tài)性能相關(guān)的參數(shù)。 主要包括Qg、MOSFET的電容、開關(guān)時(shí)間等。 參數(shù)列表如下所示。
2023-04-26 17:52:144759 功率MOSFET的雪崩強(qiáng)度限值是衡量器件針對(duì)于感性負(fù)載在開關(guān)動(dòng)作應(yīng)用中的重要參數(shù)。 清楚地理解雪崩強(qiáng)度的定義,失效的現(xiàn)象及評(píng)估的方法是功率MOSFET電路設(shè)計(jì)必備的能力。 本文將以下面三個(gè)方面進(jìn)行探討。
2023-05-15 16:17:451134 EAS單脈沖雪崩擊穿能量, EAS標(biāo)定了器件可以安全吸收反向雪崩擊穿能量的高低。以低于Tj(max)為極限。
2023-05-24 09:51:302765 監(jiān)測(cè)監(jiān)控系統(tǒng)【云唐科器】相關(guān)性能如下:
當(dāng)前檢測(cè)粉塵的主要手段是手工采樣、分析,檢測(cè)效率低,而且浪費(fèi)大量人力物力。為改善空氣質(zhì)量利用無線傳感器技術(shù)和激光
2021-03-09 16:40:18660 一、基本概念二、LDO的熱性能與什么有關(guān)? 三、 如何提高LDO的熱性能?
2023-07-19 10:33:541361 電子發(fā)燒友網(wǎng)站提供《SBR雪崩能量應(yīng)用筆記.pdf》資料免費(fèi)下載
2023-07-25 17:37:300 【科普小貼士】MOSFET的性能:雪崩能力
2023-12-07 16:46:47426 電子發(fā)燒友網(wǎng)站提供《高性能電機(jī)控制應(yīng)用的電流反饋系統(tǒng)中的相關(guān)性與可用性.pdf》資料免費(fèi)下載
2023-11-29 10:17:310 功率MOSFET雪崩特性分析
2023-12-04 14:12:36315
評(píng)論
查看更多