什么是卷積碼分組碼是把k 個(gè)信息元編成n 個(gè)碼元的碼字,每個(gè)碼字的n ? k 個(gè)校驗(yàn)位僅與本碼字的k 個(gè)信息元有關(guān),而與其他碼字無(wú)關(guān)。為了達(dá)到一定的糾錯(cuò)能力和編碼效率,分組碼的碼長(zhǎng)一般都比較大。編譯
2008-05-30 16:06:52
隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了卷積神經(jīng)網(wǎng)絡(luò)(CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提取特征的強(qiáng)大工具,例如識(shí)別音頻信號(hào)或圖像信號(hào)中的復(fù)雜模式就是其應(yīng)用之一。
2023-09-05 10:23:27148 cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),主要應(yīng)用于圖像處理和計(jì)算機(jī)視覺(jué)領(lǐng)域
2023-08-21 17:15:25390 卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一類(lèi)廣泛應(yīng)用于計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學(xué)習(xí)能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22286 卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種從圖像、視頻、聲音和一系列多維信號(hào)中進(jìn)行學(xué)習(xí)的深度學(xué)習(xí)模型。它在計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別
2023-08-21 17:15:19604 卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學(xué)習(xí)算法。它已經(jīng)成為了計(jì)算機(jī)視覺(jué)和自然語(yǔ)言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過(guò)程,為讀者提供一份
2023-08-21 17:11:49203 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計(jì)算機(jī)
2023-08-21 17:11:47273 常見(jiàn)的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語(yǔ)言等
2023-08-21 17:11:41471 卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛用于圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:57:19420 卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種廣泛應(yīng)用于目標(biāo)跟蹤、圖像識(shí)別和語(yǔ)音識(shí)別等領(lǐng)域的深度學(xué)習(xí)模型,其
2023-08-21 16:50:19361 卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點(diǎn)是具有卷積層(Convolutional Layer
2023-08-21 16:50:11301 卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動(dòng)地從圖片、音頻、文本等數(shù)據(jù)中提
2023-08-21 16:49:54228 卷積神經(jīng)網(wǎng)絡(luò)算法是機(jī)器算法嗎? 卷積神經(jīng)網(wǎng)絡(luò)算法是機(jī)器算法的一種,它通常被用于圖像、語(yǔ)音、文本等數(shù)據(jù)的處理和分類(lèi)。隨著深度學(xué)習(xí)的興起,卷積神經(jīng)網(wǎng)絡(luò)逐漸成為了圖像、語(yǔ)音等領(lǐng)域中最熱門(mén)的算法之一。 卷積
2023-08-21 16:49:48175 卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類(lèi)、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:46276 卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺(jué)相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:42473 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:39262 卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用領(lǐng)域 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種廣泛應(yīng)用于圖像、視頻和自然語(yǔ)言處理領(lǐng)域的深度學(xué)習(xí)算法。它最初是用于圖像識(shí)別領(lǐng)域,但目前已經(jīng)擴(kuò)展到了許多其他應(yīng)用領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)在
2023-08-21 16:49:29501 卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:24636 卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)? 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),是在圖像、語(yǔ)音、文本和視頻等方面的任務(wù)中最有效的神經(jīng)網(wǎng)絡(luò)之一。它的總體思想是使用在輸入數(shù)據(jù)之上的一系列過(guò)濾器來(lái)捕捉
2023-08-21 16:41:58253 卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語(yǔ)音
2023-08-21 16:41:52374 卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:48502 卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來(lái)處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)的前饋
2023-08-21 16:41:451074 卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是一個(gè)用于圖像和語(yǔ)音識(shí)別的深度學(xué)習(xí)技術(shù)。它是一種專門(mén)為處理
2023-08-21 16:41:401244 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),常用于圖像處理、自然語(yǔ)言處理等領(lǐng)域中。它是一種深度學(xué)習(xí)(Deep
2023-08-17 16:30:35240 卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30256 卷積神經(jīng)網(wǎng)絡(luò)通俗理解 卷積神經(jīng)網(wǎng)絡(luò),英文名為Convolutional Neural Network,成為了當(dāng)前深度學(xué)習(xí)領(lǐng)域最重要的算法之一,也是很多圖像和語(yǔ)音領(lǐng)域任務(wù)中最常用的深度學(xué)習(xí)模型之一
2023-08-17 16:30:251014 信號(hào)與系統(tǒng)基礎(chǔ)之卷積定理:頻域乘積相當(dāng)于時(shí)域卷積,千萬(wàn)不要問(wèn)我什么,可以去看看教材上的公式推導(dǎo)。
2023-07-04 11:42:18576 從技術(shù)上講,信號(hào)處理中的去卷積是卷積運(yùn)算的逆運(yùn)算。但這里卻不是這種運(yùn)算。因此,某些作者強(qiáng)烈反對(duì)將轉(zhuǎn)置卷積稱為去卷積。
2023-07-01 10:24:32277 來(lái)源:機(jī)器學(xué)習(xí)算法那些事卷積神經(jīng)網(wǎng)絡(luò)是以卷積層為主的深度網(wǎng)路結(jié)構(gòu),網(wǎng)絡(luò)結(jié)構(gòu)包括有卷積層、激活層、BN層、池化層、FC層、損失層等。卷積操作是對(duì)圖像和濾波矩陣做內(nèi)積(元素相乘再求和)的操作。1.卷積層
2023-06-28 10:05:59364 來(lái)源: 機(jī)器學(xué)習(xí)算法那些事 卷積神經(jīng)網(wǎng)絡(luò)是以卷積層為主的深度網(wǎng)路結(jié)構(gòu),網(wǎng)絡(luò)結(jié)構(gòu)包括有卷積層、激活層、BN層、池化層、FC層、損失層等。卷積操作是對(duì)圖像和濾波矩陣做內(nèi)積(元素相乘再求和)的操作。 1.
2023-06-27 10:20:01291 “卷積”是信號(hào)與系統(tǒng)時(shí)域分析中的一個(gè)重要內(nèi)容。本文對(duì)此知識(shí)點(diǎn)進(jìn)行了詳細(xì)的分析和總結(jié),并給出了多道例題及詳細(xì)解答。 (一)常用信號(hào)的卷積表 首先,將常用信號(hào)的卷積、以及卷積的性質(zhì)整理成表格,這些信號(hào)
2021-09-29 17:28:1426273 有太多的公開(kāi)課、教程在反復(fù)傳頌卷積神經(jīng)網(wǎng)絡(luò)的好,卻都沒(méi)有講什么是卷積,似乎默認(rèn)所有讀者都有相關(guān)基礎(chǔ)。這篇外文既友好又深入,所以翻譯了過(guò)來(lái)。文章高級(jí)部分通過(guò)流體力學(xué)量子力學(xué)等解釋卷積的做法在我看來(lái)有點(diǎn)
2020-10-17 10:06:352734 這篇文章對(duì)轉(zhuǎn)置卷積(反卷積)有著很好的解釋,這里將其翻譯為中文,以饗國(guó)人。
2020-09-03 09:39:244726 卷積神經(jīng)網(wǎng)絡(luò)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),是自動(dòng)駕駛汽車(chē)、人臉識(shí)別系統(tǒng)等計(jì)算機(jī)視覺(jué)應(yīng)用的基礎(chǔ),其中基本的矩陣乘法運(yùn)算被卷積運(yùn)算取代。
2020-05-05 08:40:004920 卷積過(guò)程是卷積神經(jīng)網(wǎng)絡(luò)最主要的特征。然而卷積過(guò)程有比較多的細(xì)節(jié),初學(xué)者常會(huì)有比較多的問(wèn)題,這篇文章對(duì)卷積過(guò)程進(jìn)行比較詳細(xì)的解釋。
2019-05-02 15:39:0013849 有些消息來(lái)源使用名稱deconvolution,這是不合適的,因?yàn)樗皇墙?b style="color: red">卷積。為了使事情更糟,確實(shí)存在解卷積,但它們?cè)谏疃葘W(xué)習(xí)領(lǐng)域并不常見(jiàn)。實(shí)際的反卷積會(huì)使卷積過(guò)程恢復(fù)。想象一下,將圖像輸入到單個(gè)
2019-04-19 16:48:323398 卷積這個(gè)東東是“信號(hào)與系統(tǒng)”中論述系統(tǒng)對(duì)輸入信號(hào)的響應(yīng)而提出的。因?yàn)槭菍?duì)模擬信號(hào)論述的,所以常常帶有繁瑣的算術(shù)推倒,很簡(jiǎn)單的問(wèn)題的本質(zhì)常常就被一大堆公式淹沒(méi)了,那么卷積究竟物理意義怎么樣呢?
2018-09-27 11:33:3410587 以(n,k,m)來(lái)描述卷積碼,其中k為每次輸入到卷積編碼器的bit數(shù),n為每個(gè)k元組碼字對(duì)應(yīng)的卷積碼輸出n元組碼字,m為編碼存儲(chǔ)度,也就是卷積編碼器的k元組的級(jí)數(shù),稱m+1= K為編碼約束度m稱為約束長(zhǎng)度。
2018-08-21 09:56:132635 咬尾卷積碼的原理是尾卷積碼保證格形起始和終止于某個(gè)相同的狀態(tài)。它具有不要求傳輸任何額外比特的優(yōu)點(diǎn)。
2018-08-21 09:11:536004 分三個(gè)部分來(lái)理解:
1.信號(hào)的角度
2.?dāng)?shù)學(xué)家的理解(外行)
3.與多項(xiàng)式的關(guān)系卷積這個(gè)東東是“信號(hào)與系統(tǒng)”中論述系統(tǒng)對(duì)輸入信號(hào)的響應(yīng)而提出的。
因?yàn)槭菍?duì)模擬信號(hào)論述的,所以常常帶有繁瑣的算術(shù)推倒,很簡(jiǎn)單的問(wèn)題的本質(zhì)常常就被一大堆公式淹沒(méi)了,那么卷積究竟物理意義怎么樣呢?
2018-07-29 10:23:1122915 由于計(jì)算機(jī)視覺(jué)的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,并描述其各自的具體應(yīng)用。
2018-05-08 10:29:003828 卷積特性(卷積定理)
2017-12-06 14:28:421 通過(guò)程序設(shè)計(jì)來(lái)實(shí)現(xiàn)連續(xù)時(shí)間系統(tǒng)卷積的計(jì)算,更深刻的理解卷積的意義。
2016-05-23 18:21:161 卷積碼,什么是卷積碼
卷積碼在一個(gè)二進(jìn)制分組碼(n,k)當(dāng)中,包含k個(gè)信息位,碼組長(zhǎng)度為n,每個(gè)碼組的(n-k)個(gè)校驗(yàn)位僅與本碼組的k個(gè)信息位
2010-04-03 12:11:066803 卷積碼,卷積碼是什么意思
卷積碼在一個(gè)二進(jìn)制分組碼(n,k)當(dāng)中,包含k個(gè)信息位,碼組長(zhǎng)度為n,每個(gè)碼組的(n-k)個(gè)校驗(yàn)位僅與本碼組的k個(gè)信息
2010-03-19 16:46:241566 卷積碼/Viterbi譯碼,卷積碼/Viterbi譯碼是什么意思
卷積碼在一個(gè)二進(jìn)制分組碼(n,k)當(dāng)中,包含k個(gè)信息位,碼組長(zhǎng)度為n,每個(gè)碼組的(
2010-03-18 14:09:212193
評(píng)論
查看更多