本文主要介紹時間序列預測并描述任何時間序列的兩種主要模式(趨勢和季節(jié)性)。并基于這些模式對時間序列進行分解。最后使用一個被稱為Holt-Winters季節(jié)方法的預測模型,來預測有趨勢和/或季節(jié)成分的時間序列數(shù)據(jù)。
2022-10-24 14:40:151176 CCD圖像分析方法和預測算法???
2012-07-01 15:20:49
檢測系統(tǒng)在低功耗、輕小型化等方面提出了更高的要求。因此,完成小目標檢測任務不僅需要尋求合理的小目標檢測算法,在實現(xiàn)時還需要考慮處理性能和體積功耗。
2019-08-09 07:07:03
人臉檢測算法及新的快速算法人臉識別設備憑借著便捷的應用,以及更加新潮的技術(shù),俘獲了不少人的好感。于是,它的應用也在日益的變得更加的廣泛。由中國電子學會主辦的全國圖形圖像技術(shù)應用大會,行業(yè)專家將介紹
2013-09-26 15:13:24
通過之前有關(guān)LSTM的8遍基礎教程和10篇處理時間序列預測任務的教程介紹,使用簡單的序列數(shù)據(jù)示例,已經(jīng)把LSTM的原理,數(shù)據(jù)處理流程,模型架構(gòu),Keras實現(xiàn)都講清楚了。從這篇文章開始,將介紹有關(guān)
2021-07-12 09:18:48
目前優(yōu)化了一款高速人臉檢測算法,在 ARM設備的A73單核CPU(圖像大小:860*540最小人臉大?。?0*60)速度可以高達10-15ms每幀,真正的實時人臉檢測算法,算法準確率在 FDDB數(shù)據(jù)
2021-12-15 07:01:06
1、基于SARIMA、XGBoost和CNN-LSTM的時間序列預測對比 時間序列預測是一個經(jīng)常被研究的話題,我們這里使用使用兩個太陽能電站的數(shù)據(jù),研究其規(guī)律進行建模。首先將它們歸納為兩個問題來
2022-12-20 16:34:57
,較好的改善了遮擋目標的漏檢問題。在目標檢測算法訓練的過程中,我們把預測框和真實框(Groundtruth)進行匹配,當一個預測框和 Ground-truth 匹配后,則該框為正樣本;反之,未成功匹配
2023-03-06 13:55:27
為降低幀內(nèi)預測的運算復雜度,根據(jù)不同的模式在宏塊中出現(xiàn)概率的大小不同,在幀內(nèi)4×4的亮度預測模式中,選取出現(xiàn)概率最大的5種預測模式,作為優(yōu)先選擇的預測模式?;谙袼貕K的紋理特性,選擇不具有
2010-05-06 09:01:59
什么是同步檢測算法?如何去實現(xiàn)相位模糊估計的幀同步檢測算法?
2021-05-06 07:23:16
如何通過FEDOT將AutoML用于時間序列數(shù)據(jù)?如何通過時間序列預測的現(xiàn)實世界任務了解FEDOT的核心正在發(fā)生什么?
2021-10-26 07:37:57
鑒于智能電表的興起以及太陽能電池板等發(fā)電技術(shù)的廣泛采用,有大量的用電數(shù)據(jù)可供選擇。該數(shù)據(jù)代表了多變量時間序列的功率相關(guān)變量,這些變量又可用于建模甚至預測未來的電力消耗。與其他機器學習算法不同,長期
2021-07-05 06:43:44
心電波形的監(jiān)測算法
2016-11-07 09:45:36
如何開發(fā)和評估家庭電力數(shù)據(jù)集的預測模型?LSTM在多步時間序列預測方面具有哪些優(yōu)勢?怎樣去搭建一套用于多步時間序列預測的LSTM架構(gòu)?
2021-07-22 06:19:11
求Matlab圖像自編邊緣檢測算法,多謝了
2013-12-03 20:58:39
,降低鉆井安全風險很有意思。本畢業(yè)設計題目結(jié)合傳感器及檢測技術(shù),單片機技術(shù)及機電一體化系統(tǒng)設計等知識完成鉆柱載荷測量儀的設計,主要工作任務:1、研究制定鉆柱載荷測量方案。2、完成系統(tǒng)硬件設計。3、完成系統(tǒng)軟件設計4、完成設計說明書的撰寫。設計參數(shù):軸向力
2019-04-01 14:48:21
,為了預測下一個小時的值,我們使用表格格式重新排列了以前可用的每小時觀測值。這樣時間序列預測的特征選擇就與標準的表格監(jiān)督任務一樣。這樣特征選擇的算法就可以簡單地對滯后的目標特征進行操作。下面是一個
2022-09-07 14:46:38
目.實驗結(jié)果表明,該算法與經(jīng)典菱形搜索算法相比,搜索時間平均減少7.6m s,信噪比平均提高1.2dB【關(guān)鍵詞】:視頻壓縮;;遺傳算法;;對象分割;;多分辨率預測【DOI】:CNKI:SUN
2010-04-24 09:53:49
1、如何建立一個模型來進行多元時間序列預測呢? 下圖顯示了關(guān)于不同類型葡萄酒銷量的月度多元時間序列。每種葡萄酒類型都是時間序列中的一個變量。 假設要預測其中一個變量。比如,sparkling
2022-11-30 15:33:53
怎么設計幀內(nèi)預測算法各個模塊的代碼呢,用vhdl語言
2019-04-10 00:42:37
請問h.264幀內(nèi)預測算法的各個子模塊的代碼,怎么去設計呢,
2019-03-03 19:33:37
h.264的幀內(nèi)預測算法的ding層設計怎么去設計
2019-03-03 19:40:17
我用的是兩相交錯并聯(lián)的DC/DC電路結(jié)構(gòu),用F2812做處理器,開關(guān)頻率80K,控制算法用的是電壓單閉環(huán)+模型預測算法。設定輸出電壓的參考值,反饋實際輸出電壓,比較經(jīng)過PI以后得到電流參考值,然后
2018-07-23 14:52:26
有沒有誰會小波神經(jīng)網(wǎng)絡預測算法的設計啊,需要在MATLAB里面實現(xiàn)的,這是其中一部分,但是在MATLAB里面實現(xiàn)不了,有誰會完整的程序設計嗎?著急啊,幫幫忙吧%%網(wǎng)絡初始化Load
2016-04-15 13:24:19
邊緣檢測是什么?邊緣檢測算子有哪些?邊緣檢測算法分為哪幾種?它們有何不同?
2021-05-31 06:57:51
針對傳統(tǒng)的時間序列分析方法預測科學數(shù)據(jù)效果較差的特點,提出了一種結(jié)合自組織神經(jīng)網(wǎng)絡和灰色理論的時間序列預測方法。該方法利用度量時間序列相似性距離函數(shù),將時間
2008-12-31 23:56:5710 摘要:討論了序列圖像的運動目標檢測算法,在傳統(tǒng)的光流場計算方法的基礎上,提出了基于幀間差閾值法的快速光流算法。整個算法簡單、有效,保證了序列圖像中運動目標跟
2009-01-09 12:06:2329 時間序列包含的數(shù)據(jù)量大、維數(shù)高、數(shù)據(jù)更新快,很難直接在原始時間序列上進行數(shù)據(jù)挖掘。該文提出一種基于序列重要點(SIP)的時間序列分割算法——PLR_SIP,用SIP組成的直線段近
2009-04-09 09:05:3326 針對復雜環(huán)境下運動目標檢測提出一種基于像素分類的運動目標檢測算法。該算法通過亮度歸一化對圖像序列進行預處理,用以降低光照變化造成的誤檢,根據(jù)場景中不同像素點的
2009-04-10 08:51:014 提出一種新的基于符號化表示的時間序列頻繁子序列的挖掘算法。利用基于PAA的分段線性表示法進行降維,通過在高斯分布下設置斷點,實現(xiàn)時間序列符號化表示,利用投影數(shù)據(jù)庫
2009-04-22 09:46:0210 提出一種新的基于符號化表示的時間序列頻繁子序列的挖掘算法。利用基于PAA的分段線性表示法進行降維,通過在高斯分布下設置斷點,實現(xiàn)時間序列符號化表示,利用投影數(shù)據(jù)庫
2009-04-22 09:46:2124 在金融市場、信息網(wǎng)絡以及電子商務等領(lǐng)域中積累了大量時間序列數(shù)據(jù),對這些數(shù)據(jù)進行深層次的分析,是數(shù)據(jù)挖掘研究中的重要方向之一。Microsoft 時序算法是一個新的預測算法,
2009-07-09 10:01:5921 隨著計算機軟、硬件的進步,人們利用信息技術(shù)產(chǎn)生和搜集數(shù)據(jù)的能力大幅度提高。作為數(shù)據(jù)挖掘的重要研究課題之一,時間序列的挖掘與預測近幾年發(fā)展迅速。本文對時間序列
2009-08-18 10:08:3515 改進GP分形理論的最近鄰序列預測算方法:針對現(xiàn)有的時間序列分析和預測算法中主觀性太強的缺點,借助分形理論對時間序列作有效的分析。
2010-01-03 17:00:1812 如何提取和選擇時間序列的特征是時間序列分類領(lǐng)域兩個重要的問題。該文提出MNOE(Mining Non-Overlap Episode)算法計算時間序列中的非重疊頻繁模式,并將其作為時間序列特征?;谶@些
2010-02-08 15:41:247 該文針對異構(gòu)網(wǎng)絡環(huán)境未知性的特點,基于部分可測馬爾科夫(POMDP)模型,結(jié)合認知無線電頻譜偵測技術(shù),提出了一種新的多無線電多信道環(huán)境下信道狀態(tài)預測算法。該算法通過對信
2010-02-09 14:52:2910 采用卡爾曼濾波和小波的網(wǎng)絡流量預測算法研究
流量預測是流量工程,擁塞控制和網(wǎng)絡管理的核心問題。該文針對網(wǎng)絡流量的特點,將卡爾曼濾波和小波分析混
2010-02-27 09:11:5617 該文提出FPM(Frequent Pattern Mining)算法充分考慮頻繁模式在時間序列中出現(xiàn)次數(shù)和分布?;谶@些不同分布的頻繁模式擴展MAMC(Mixed memory Aggregation Markov Chain)模型提出FMAMC(Frequentpattern based
2010-03-06 11:16:5816 本文提出了一種基于相位差測量的故障檢測算法。該算法利用發(fā)送脈沖與反射脈沖對應的相位差計算故障距離,采用貝葉斯頻譜估計算法對故障數(shù)據(jù)進行處理分析,充分利用采集到的數(shù)
2010-08-05 17:07:5311 本文采用FTP圖時間序列方法對流程企業(yè)中的實際運行數(shù)據(jù)進行數(shù)據(jù)挖掘,還介紹了 FTP 圖的基本概念和定義,提出基于FTP-圖的時間序列分析算法并編程實現(xiàn)等等。
2011-07-18 15:52:1419 算法大全_時間序列模型,有需要的下來看看
2016-01-14 17:59:560 三操作數(shù)的前導1預測算法糾錯編碼模塊的設計與實現(xiàn)_王京京
2017-01-03 18:00:370 多尺度混沌時間序列在載流故障預測中的應用_孟垚
2017-01-08 11:51:410 旋轉(zhuǎn)導向鉆井系統(tǒng)Fuzzy_PID控制算法_陳蘇
2017-01-12 20:08:012 基于能量譜紋理分析的幀內(nèi)預測算_朱伶俐
2017-03-16 10:38:070 針對目前風電場風速預測精度較低的問題,提出一種基于多尺度小波分解和時間序列法的混合風速預測模型,通過小波分解將風速非平穩(wěn)時間序列分解為不同尺度坐標上的平穩(wěn)時間序列,然后把分解后的各層序列重構(gòu)回原尺度
2017-10-21 09:40:093 針對高壓電塔在風載荷作用下的應力應變問題,提出一種基于非線性有限元的壽命預測算法。該算法根據(jù)高壓電塔高柔低質(zhì)的結(jié)構(gòu)特點,并結(jié)合平均應力動態(tài)模擬電塔在風載荷作用下的疲勞壽命,最終達到對高壓電塔的壽命
2017-11-15 16:16:1213 現(xiàn)有的基于隨機游走鏈路預測指標在無權(quán)網(wǎng)絡上的轉(zhuǎn)移過程存在較強隨機性,沒有考慮在網(wǎng)絡結(jié)構(gòu)上不同鄰居節(jié)點間的相似性對轉(zhuǎn)移概率的作用。針對此問題,提出一種基于網(wǎng)絡表示學習與隨機游走的鏈路預測算法。首先
2017-11-29 10:24:180 針對基于u-shapelets的時間序列聚類中u-shapelets集合質(zhì)量較低的問題,提出一種基于最佳u-shapelets的時間序列聚類算法DivUshapCluster。首先,探討不同子序列
2017-11-29 15:26:124 鏈路預測算法。該方法通過局部拓撲結(jié)構(gòu)定義共同鄰居緊密度,并引入?yún)?shù)調(diào)節(jié)不同網(wǎng)絡中緊密程度,最終刻畫網(wǎng)絡節(jié)點間的相似度。6個實際網(wǎng)絡測試表明,相比共同鄰居(CN)、資源分配(RA)、Adamic-Adar( AA)、局部路徑(LP)、
2017-11-29 17:16:300 在供水管網(wǎng)中部署傳感器網(wǎng)絡實時獲取多個水質(zhì)參數(shù)時間序列數(shù)據(jù),當供水管網(wǎng)發(fā)生污染時,高效準確地檢測水質(zhì)異常是一個重要問題。提出多變量水質(zhì)參數(shù)時間異常事件檢測算法( M-TAEDA),利用BP模型分析
2017-12-07 16:17:030 了一個基于分布式平臺上的時間序列局部相似性檢測算法。將CrossMatch算法實現(xiàn)在了分布式框架上,解決了計算資源不足的問題。首先需要對序列進行切分,分別放置在不同的節(jié)點上;其次,各節(jié)點分別處理各自序列的相似部分;最后,通過對結(jié)果進行匯總
2017-12-08 17:16:440 針對模擬電路故障預測存在的非線性時間序列預測問題和傳統(tǒng)支持向量回歸( SVR)多步預測時出現(xiàn)的誤差累積問題,提出了一種基于相空間重構(gòu)的自適應殘差修正SVR預測算法。首先,分析了SVR多步預測方法
2017-12-11 15:57:191 時間序列同構(gòu)關(guān)系,經(jīng)過數(shù)學推導給出了時間序列同構(gòu)關(guān)系判定的法則,并基于此提出了同構(gòu)關(guān)系時間序列片段發(fā)現(xiàn)的算法。該算法首先對原始時間序列進行預處理,然后分段擬合后對各時間序列分段進行同構(gòu)關(guān)系判定。針對現(xiàn)實背景
2017-12-12 15:52:530 預測算法(TR_C M_PR算法)。首先,順序截取預測點前不同長度的子軌跡,計算采用灰色GM(1,1)模型擬合各子軌跡的相對誤差及相應的預測值;其次,對各子軌跡的相對擬合誤差進行歸一化處理,根據(jù)處理后的結(jié)果設置各子軌跡預測值權(quán)重;最后,將各
2017-12-19 15:30:151 針對如何分配一個未來一段時間內(nèi)滿足QoS要求的云服務和感知可能將要發(fā)生的QoS違規(guī)的問題,提出一種基于時間序列預測方法的云服務QoS預測方法。該預測方法利用改進的貝葉斯常均值(IBCM)模型,能夠
2017-12-20 17:12:580 針對低階Markov模型預測精度較差,以及多階Markov模型預測稀疏率高的問題,提出一種基于Markov模型與軌跡相似度( MMTS)的移動對象位置預測算法。該方法借鑒了Markov模型思想對移動
2017-12-25 15:00:090 基于時序?qū)R的K近鄰分類器是時間序列分類的基準算法.在實際應用中,同類復雜時間序列經(jīng)常展現(xiàn)出不同的全局特性.由于傳統(tǒng)時序?qū)R方法平等對待實例特征并忽略其局部辨別特性。因此難以準確、高效地處理此類具有
2017-12-25 16:37:010 本文在目標軌跡預測中采用了數(shù)據(jù)挖掘的方法,提出了一個具體的基于移動模式匹配的目標軌跡預測算法。該方法通過不斷挖掘歷史移動軌跡來構(gòu)造前綴共享樹的方法挖掘出頻繁移動模式,之后通過模式匹配預測出目標的移動軌跡。仿真結(jié)果表明該算法的時間消耗和空間消耗較小,同時具有很高的預測準確性。
2017-12-27 17:01:161 針對移動對象軌跡預測所面臨的數(shù)據(jù)稀疏問題,即有效的歷史軌跡空間不能覆蓋所有可能的查詢軌跡,提出了一種基于迭代網(wǎng)格劃分和熵估計的稀疏軌跡預測算法(r IPDS-ICPEE)。首先,對軌跡區(qū)域進行迭代
2017-12-29 11:26:561 本文針對現(xiàn)有的ML(Maximum Likelihood)檢測算法復雜度高,而傳統(tǒng)檢測算法性能不是很優(yōu)的問題,提出了一種新的檢測算法。新的檢測算法結(jié)合ZF-OSIC和ML檢測算法,根據(jù)ZF-OSIC
2017-12-29 14:52:210 非雙曲型非線性系統(tǒng)同宿切面點和同宿橫截點的存在,使得在機器精度內(nèi)實現(xiàn)其時間序列軌跡重影變得十分困難。本文從原理上分析了同宿切面點對軌跡重影算法的影響,并給出可降低甚或避免同宿切面點對算法性能
2018-01-05 16:48:110 針對單一數(shù)據(jù)源預測蛋白質(zhì)功能效果不佳以及蛋白質(zhì)相互作用網(wǎng)絡信息不完全等問題,提出一種多數(shù)據(jù)源融合和基于雙重索引矩陣的隨機游走的蛋白質(zhì)功能預測( MSI-RWDIM)算法。該算法使用了蛋白質(zhì)序列、基因
2018-01-09 16:42:471 為了更好的對具有多尺度特性的時間序列進行預測,運用小波分析方法與回聲狀態(tài)網(wǎng)絡模型相結(jié)合來創(chuàng)建小波回聲狀態(tài)網(wǎng)絡預測模型。利用小波方法對原始時間序列進行處理,獲得不同層上的細節(jié)部分序列和概貌部分序列
2018-01-13 11:40:020 時間序列數(shù)據(jù)蘊含趨勢信息,可以根據(jù)數(shù)據(jù)的趨勢信息提取趨勢轉(zhuǎn)折點,達到壓縮數(shù)據(jù)、減少噪聲影響的目的。通過分析時間序列數(shù)據(jù)的趨勢信息,提出自適應數(shù)據(jù)趨勢轉(zhuǎn)折點提取算法。該算法不依賴任何先驗知識,根據(jù)數(shù)據(jù)
2018-01-17 10:53:5411 針對現(xiàn)有直覺模糊時間序列模型中直覺模糊關(guān)系組和確定性轉(zhuǎn)換規(guī)則過度依賴訓練數(shù)據(jù)規(guī)模的問題,提出一種基于動態(tài)時間彎曲(DTW,dynamic time warping)距離的長期直覺模糊時間序列預測模型
2018-02-08 16:14:020 針對現(xiàn)有長持續(xù)時間數(shù)據(jù)流檢測算法的實時性差、檢測精度與估計精度低的問題,提出長持續(xù)時間數(shù)據(jù)流的并行檢測算法?;诠蚕頂?shù)據(jù)結(jié)構(gòu)的長持續(xù)時間數(shù)據(jù)流的并行檢測算法中不同線程訪問共享數(shù)據(jù)結(jié)構(gòu),線程之問的同步
2018-03-06 15:54:270 傳統(tǒng)負荷預測算法在歷史負荷序列無不良數(shù)據(jù)的條件下已能對短期負荷做出較為理想的預測。由于實際負荷數(shù)據(jù)在監(jiān)測、集抄、存儲過程中難免會產(chǎn)生錯誤或有所誤差,此時仍依靠傳統(tǒng)預測算法進行負荷預測,可能在某些
2018-03-28 14:34:190 傳統(tǒng)時間序列相似度量算法在時間序列發(fā)生平移、時間軸伸縮等情況下,需要時間對齊等人工干預,并且時間復雜度較高,不利于后續(xù)數(shù)據(jù)挖掘處理。為此,基于系數(shù)矩陣弧微分提出時間序列相似度量算法。引入回歸分析
2018-03-29 09:45:190 針對現(xiàn)有的基于模式的序列分類算法對于生物序列存在分類精度不理想、模型訓練時間長的問題,提出密度感知模式,并設計了基于密度感知模式的生物序列分類算法-BSC。首先,在生物序列中挖掘具有密度感知的頻繁
2018-03-29 13:54:140 Apollo 障礙物行為預測系統(tǒng)采用 MLP 多層感知機制,通過深度神經(jīng)網(wǎng)絡與規(guī)劃算法,達到精準預測路徑的目的。
2018-12-18 09:54:448695 預測是一件復雜的事情,在這方面做得好的企業(yè)會在同行業(yè)中出類拔萃。時間序列預測的需求不僅存在于各類業(yè)務場景當中,而且通常需要對未來幾年甚至幾分鐘之后的時間序列進行預測。如果你正要著手進行時間序列預測
2021-02-14 11:34:002147 每個時間片的最大分數(shù),并利用預測算法使得工人在完成該任務后盡可能處于任務密集區(qū)域,避免岀現(xiàn)工人沒有合適任務可執(zhí)行的情況發(fā)生,實現(xiàn)模型的最優(yōu)在線任務分配。在滴滴快車數(shù)據(jù)集上的實驗結(jié)果表明,與BASIC、LLEP和CDP策略相
2021-03-22 11:47:3126 海面艦船的軌跡預測對預測精度和實時性具有較高要求,而艦船軌跡數(shù)據(jù)特征的高復雜度特性,導致傳統(tǒng)預測算法精度低、耗時長,難以達到良好的預測效果。為此,提出一種基于變分自編碼器的海面艦船軌跡預測算法
2021-03-30 09:53:425 鏈路預測是復雜網(wǎng)絡的重要研究方向,當前的鏈路預測算法因可利用的網(wǎng)絡信息有限,導致預測算法的精確度受限為了提高預測算法的性能,采用改進的 Adaboost算法進行鏈路預測。首先根據(jù)復雜網(wǎng)絡樣本建立
2021-04-08 11:21:2815 文中提出一種基于量子粒子群優(yōu)化策略的車聯(lián)網(wǎng)交通流量預測算法。根據(jù)交通流量數(shù)據(jù)特征建立對應模型,將遺傳模擬退火算法應用到量子粒子群算法中得到優(yōu)化的初始聚類中心,并將優(yōu)化后的算法應用于徑向基神經(jīng)網(wǎng)絡預測
2021-04-25 15:04:229 的相似度映射模型,從而在歷史水文時間序列中匹配出與預見期水文趨勢最相似的序列,從而達到水文趨勢預測的目的。為了證明所提方法的高效性和可行性,以太湖水文時間序列數(shù)據(jù)為對象進行了驗證。分析結(jié)果表明,基于機器學習的多元水文
2021-04-26 15:39:306 整體框架 目標檢測算法主要包括:【兩階段】目標檢測算法、【多階段】目標檢測算法、【單階段】目標檢測算法 什么是兩階段目標檢測算法,與單階段目標檢測有什么區(qū)別? 兩階段目標檢測算法因需要進行兩階
2021-04-30 10:22:0410070 的時間序列索引DSI,通過設置差值及差值等級對時間序列數(shù)據(jù)進行動態(tài)分段,使用區(qū)間樹快速查找不同長度的數(shù)據(jù)分段塊,并利用層次聚類算法優(yōu)化查詢結(jié)果集合。實驗結(jié)果表明,DSI索引的查詢效率優(yōu)于現(xiàn)有時間序列查詢索引。
2021-05-10 16:20:388 基于圖的隨機游走算法在預測論文影響力時,僅利用學術(shù)網(wǎng)絡的全局結(jié)構(gòu)信息而未考慮局部結(jié)構(gòu)信息,對預測準確率造成影響。針對該問題,提出一種基于異構(gòu)學術(shù)網(wǎng)絡表示學習和多變量隨機游走的論文影響力預測算法。通過
2021-05-24 14:42:301 的動態(tài)網(wǎng)絡節(jié)點表示的鏈路預測算法,即每一時刻的節(jié)點表示向量由歷史的表示向量計算得到,以反映節(jié)點在向量空間中的變化規(guī)律,同時結(jié)合節(jié)點間的高階鄰近特性,生成具有魯棒性的節(jié)點向量來維護網(wǎng)絡結(jié)構(gòu)。在真實數(shù)據(jù)集上的實驗
2021-06-02 14:23:0117 復雜網(wǎng)絡下的局部路徑鏈路預測算法
2021-06-09 15:33:0323 基于RNN的GIS故障預測算法及系統(tǒng)設計
2021-07-01 15:38:3730 ,如何才能為大家提供更好的服務。 如果可以根據(jù)儀表的過去表現(xiàn),根據(jù)供求規(guī)律來預測它的未來價值,那會怎樣呢? 準確預測什么時間采取相應策略來實現(xiàn)目標,這是一個不小的挑戰(zhàn),但對于這個挑戰(zhàn),其實是可以通過時間序列預測來解
2021-11-18 15:58:361481 的影響,是一個時空依賴環(huán)境下的預測問題,頗具挑戰(zhàn)性.提出一種基于深度神經(jīng)網(wǎng)絡的公交到站時間預測算法STPM,算法采用時空組件、屬性組件和融合組件預測公交車輛從起點站到終點站的總時長.其中,利用時空組件學習事物
2022-02-28 10:59:52481 今天給大家?guī)硪黄獙崙?zhàn)案例,本案例旨在運用之前學習的時間序列分析和預測基礎理論知識,用一個基于交通數(shù)據(jù)的實際案例數(shù)據(jù)演示這些方法是如何被應用的。
2022-03-16 14:05:002156 01 時間序列分析的定義 1.1 概念 首先,時間序列定義為在一定時間間隔內(nèi)按時間順序測量的某個數(shù)量。時間序列分析是指將歷史數(shù)據(jù)分解為四部分來看——趨勢、周期、時期和不穩(wěn)定因素,然后綜合這些因素
2022-03-16 16:17:374093 , GBRT)等簡單機器學習模型,而且增強了這樣一種預期,即機器學習領(lǐng)域的時間序列預測模型需要以深度學習工作為基礎,才能得到 SOTA 結(jié)果。
2022-03-24 13:59:241450 目前,日志異常檢測算法采用基于時間序列的方法檢測異常,具體為:日志結(jié)構(gòu)化 -> 日志模式識別 -> 時間序列轉(zhuǎn)換 -> 異常檢測。異常檢測算法根據(jù)日志指標時序數(shù)據(jù)的周期性檢測出歷史
2022-12-09 10:47:051097 在處理時間序列預測問任務時,損失函數(shù)的選擇非常重要,因為它會驅(qū)動算法的學習過程。以往的工作提出了不同的損失函數(shù),以解決數(shù)據(jù)存在偏差、需要長期預測、存在多重共線性特征等問題。
2023-02-14 09:19:532350
評論
查看更多