電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>今日頭條>工業(yè)驅(qū)動使用SiC MOSFET提高能效

工業(yè)驅(qū)動使用SiC MOSFET提高能效

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關推薦

SiC Mosfet管特性及其專用驅(qū)動電源

本文簡要比較了下SiC Mosfet管和Si IGBT管的部分電氣性能參數(shù)并分析了這些電氣參數(shù)對電路設計的影響,并且根據(jù)SiC Mosfet管開關特性和高壓高頻的應用環(huán)境特點,推薦了金升陽可簡化設計隔離驅(qū)動電路的SIC驅(qū)動電源模塊。
2015-06-12 09:51:234738

如何復制下一代柵極驅(qū)動光電耦合器的改進,以驅(qū)動和保護SiC MOSFET

為了匹配CREE SiC MOSFET的低開關損耗,柵極驅(qū)動器必須能夠以快速壓擺率提供高輸出電流和電壓,以克服SiC MOSFET的柵極電容。
2021-05-24 06:17:002390

SiC MOSFET提高工業(yè)驅(qū)動效率

工業(yè)領域的電力應用通?;趶姶蟮碾妱訖C,用于連續(xù)運行的風扇、泵、伺服驅(qū)動器、壓縮機、縫紉機和冰箱。工業(yè)領域最常見的配置是三相電動機,由適當?shù)幕谀孀兤鞯?b class="flag-6" style="color: red">驅(qū)動器驅(qū)動。這些電機可以吸收高達 60% 的工業(yè)總功率需求,因此確保驅(qū)動器提供高效率水平至關重要。
2022-07-26 09:46:35629

如何實現(xiàn)SiC MOSFET的短路檢測及保護?

SiC功率MOSFET由于其出色的物理特性,在充電樁及太陽能逆變器等高頻應用中日益得到重視。因為SiC MOSFET開關頻率高達幾百K赫茲,門極驅(qū)動的設計在應用中就變得格外關鍵。因為在短路
2023-06-01 10:12:07998

SiC MOSFET柵極驅(qū)動電路的優(yōu)化方案

MOSFET的獨特器件特性意味著它們對柵極驅(qū)動電路有特殊的要求。了解這些特性后,設計人員就可以選擇能夠提高器件可靠性和整體開關性能的柵極驅(qū)動器。在這篇文章中,我們討論了SiC MOSFET器件的特點以及它們對柵極驅(qū)動電路的要求,然后介紹了一種能夠解決這些問題和其它系統(tǒng)級考慮因素的IC方案。
2023-08-03 11:09:57740

SiC MOSFETSiC SBD的優(yōu)勢

下面將對于SiC MOSFETSiC SBD兩個系列,進行詳細介紹
2023-11-01 14:46:19736

SiC MOSFET驅(qū)動電壓尖峰的抑制方法簡析(下)

高頻、高速開關是碳化硅(SiC) MOSFET的重要優(yōu)勢之一,這能讓系統(tǒng)效率顯著提升,但也會在寄生電感和電容上產(chǎn)生更大的振蕩,從而在驅(qū)動電壓上產(chǎn)生更大的尖峰。
2023-12-20 09:20:45941

SIC MOSFET

有使用過SIC MOSFET 的大佬嗎 想請教一下驅(qū)動電路是如何搭建的。
2021-04-02 15:43:15

SiC-MOSFET與Si-MOSFET的區(qū)別

從本文開始,將逐一進行SiC-MOSFET與其他功率晶體管的比較。本文將介紹與Si-MOSFET的區(qū)別。尚未使用過SiC-MOSFET的人,與其詳細研究每個參數(shù),不如先弄清楚驅(qū)動方法等
2018-11-30 11:34:24

SiC-MOSFET體二極管特性

SiC-MOSFET-SiC-MOSFET的可靠性全SiC功率模塊所謂全SiC功率模塊全SiC功率模塊的開關損耗運用要點柵極驅(qū)動 其1柵極驅(qū)動 其2應用要點緩沖電容器 專用柵極驅(qū)動器和緩沖模塊的效果Si功率元器件基礎篇前言前言Si
2018-11-27 16:40:24

SiC-MOSFET功率晶體管的結構與特征比較

”)應用越來越廣泛。關于SiC-MOSFET,這里給出了DMOS結構,不過目前ROHM已經(jīng)開始量產(chǎn)特性更優(yōu)異的溝槽式結構的SiC-MOSFET。具體情況計劃后續(xù)進行介紹。在特征方面,Si-DMOS存在
2018-11-30 11:35:30

SiC-MOSFET器件結構和特征

的小型化?! ×硗猓?b class="flag-6" style="color: red">SiC-MOSFET能夠在IGBT不能工作的高頻條件下驅(qū)動,從而也可以實現(xiàn)無源器件的小型化?! ∨c600V~900V的Si-MOSFET相比,SiC-MOSFET的優(yōu)勢在于芯片
2023-02-07 16:40:49

SiC-MOSFET有什么優(yōu)點

,SiC-MOSFET能夠在IGBT不能工作的高頻條件下驅(qū)動,從而也可以實現(xiàn)無源器件的小型化。與600V~900V的Si-MOSFET相比,SiC-MOSFET的優(yōu)勢在于芯片面積?。蓪崿F(xiàn)小型封裝),而且體
2019-04-09 04:58:00

SiC-MOSFET的可靠性

本文就SiC-MOSFET的可靠性進行說明。這里使用的僅僅是ROHM的SiC-MOSFET產(chǎn)品相關的信息和數(shù)據(jù)。另外,包括MOSFET在內(nèi)的SiC功率元器件的開發(fā)與發(fā)展日新月異,如果有不明之處或希望
2018-11-30 11:30:41

SiC-MOSFET的應用實例

SiC-MOSFET-SiC-MOSFET的應用實例所謂SiC-MOSFET-SiC-MOSFET的可靠性全SiC功率模塊所謂全SiC功率模塊全SiC功率模塊的開關損耗運用要點柵極驅(qū)動 其1柵極驅(qū)動 其2
2018-11-27 16:38:39

SiC MOSFET DC-DC電源

`請問:圖片中的紅色白色藍色模塊是什么東西?芯片屏蔽罩嗎?為什么加這個東西?抗干擾或散熱嗎?這是個SiC MOSFET DC-DC電源,小弟新手。。`
2018-11-09 11:21:45

SiC MOSFET SCT3030KL解決方案

了熱管理,減小了印刷電路板的外形尺寸,有利于提高系統(tǒng)的穩(wěn)定性。圖1 SiC MOSFET和Si MOSFET性能對比在使用SiC MOSFET進行系統(tǒng)設計時,工程師們通常要考慮如何以最優(yōu)方式驅(qū)動(最大
2019-07-09 04:20:19

SiC MOSFET的器件演變與技術優(yōu)勢

一樣,商用SiC功率器件的發(fā)展走過了一條喧囂的道路。本文旨在將SiC MOSFET的發(fā)展置于背景中,并且 - 以及器件技術進步的簡要歷史 - 展示其技術優(yōu)勢及其未來的商業(yè)前景?! √蓟杌蛱蓟璧臍v史
2023-02-27 13:48:12

SiC MOSFET:經(jīng)濟高效且可靠的高功率解決方案

柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時的130A左右。即使碳化硅MOSFET的短路耐受時間短于IGTB的短路耐受時間,也可以通過集成在柵極驅(qū)動器IC中的去飽和功能來保護SiC
2019-07-30 15:15:17

SiC功率器件SiC-MOSFET的特點

,SiC-MOSFET能夠在IGBT不能工作的高頻條件下驅(qū)動,從而也可以實現(xiàn)無源器件的小型化。與600V~900V的Si-MOSFET相比,SiC-MOSFET的優(yōu)勢在于芯片面積?。蓪崿F(xiàn)小型封裝),而且體
2019-05-07 06:21:55

SiC功率模塊的柵極驅(qū)動其1

從本文開始將探討如何充分發(fā)揮全SiC功率模塊的優(yōu)異性能。此次作為柵極驅(qū)動的“其1”介紹柵極驅(qū)動的評估事項,在下次“其2”中介紹處理方法。柵極驅(qū)動的評估事項:柵極誤導通首先需要了解的是:接下來要介紹
2018-11-30 11:31:17

提高能并最大限度降低物料成本

利用雙電機無傳感器磁場定向控制(FOC)和有源功率因素校正(PFC),實現(xiàn)空調(diào)電機控制提高能和降低系統(tǒng)成本是促使現(xiàn)代電機控制技術發(fā)展的推動力量,這些技術廣泛應用于各種風扇、泵機、壓縮機或減速電機
2018-12-04 09:54:53

驅(qū)動功率MOSFET,IBGT,SiC MOSFET的PCB布局需要考慮哪些因素?

請問:驅(qū)動功率MOSFET,IBGT,SiC MOSFET的PCB布局需要考慮哪些因素?
2019-07-31 10:13:38

高能PF有什么優(yōu)勢?

創(chuàng)新的電流控制頻率反走(CCFF)技術使模擬功率因數(shù)校正(PFC)控制器能夠在完整負載范圍內(nèi)提供高能,其它已知優(yōu)勢還包括快速瞬態(tài)響應及簡化電路設計。
2019-08-14 06:15:22

高能電源的設計指南

的NCP1605高能待機模式PFC控制器就可以提高PFC輕載能,進一步降低損耗。該器件采用高壓電流源,外部設定固定開關頻率,并可工作在DCM/CRM模式;可以在待機條件下軟跳周期(Soft-SkipTM
2011-12-13 10:46:35

OptiMOS 3功率MOSFET系列產(chǎn)品為高能產(chǎn)品提供更高性能

引言 如今,客戶要求產(chǎn)品不但節(jié)能,還要體積更小,從而推動功率轉換行業(yè)向前發(fā)展。交流/直流和直流/直流轉換器拓撲的不斷發(fā)展,改善了轉換器效率。功率MOSFET是功率轉換器的核心部件,是設計高能產(chǎn)品
2018-12-07 10:21:41

ROHM的SiC MOSFETSiC SBD成功應用于Apex Microtechnology的工業(yè)設備功率模塊系列

V SiC MOSFET“S4101”和650V SiC SBD“S6203”是以裸芯片的形式提供的,采用ROHM的這些產(chǎn)品將有助于應用的小型化并提高模塊的性能和可靠性。另外
2023-03-29 15:06:13

【羅姆SiC-MOSFET 試用體驗連載】SiC MOSFET元器件性能研究

項目名稱:SiC MOSFET元器件性能研究試用計劃:申請理由本人在半導體失效分析領域有多年工作經(jīng)驗,熟悉MOSET各種性能和應用,掌握各種MOSFET的應用和失效分析方法,熟悉MOSFET的主要
2020-04-24 18:09:12

【羅姆SiC-MOSFET 試用體驗連載】SiC開發(fā)板主要電路分析以及SiC Mosfet開關速率測試

SiC Mosfet管組成上下橋臂電路,整個評估板提供了一個半橋電路,可以支持Buck,Boost和半橋開關電路的拓撲。SiC Mosfet驅(qū)動電路主要有BM6101為主的芯片搭建而成,上下橋臂各有一塊
2020-06-07 15:46:23

【羅姆SiC-MOSFET 試用體驗連載】基于SIC-MOSFET評估板的開環(huán)控制同步BUCK轉換器

是48*0.35 = 16.8V,負載我們設為0.9Ω的阻值,通過下圖來看實際的輸入和輸出情況:圖4 輸入和輸出通過電子負載示數(shù),輸出電流達到了17A。下面使用示波器測試SIC-MOSFET管子的相關
2020-06-10 11:04:53

【羅姆SiC-MOSFET 試用體驗連載】基于Sic MOSFET的直流微網(wǎng)雙向DC-DC變換器

,MOSFET的稍微高一些65KHZ-100KHZ,我們希望通過使用新型開關管以提高開關頻率,縮小設備體積,提高效率,所以急需該評估版以測試和深入了解SiC MOS的性能和驅(qū)動,望批準!項目計劃1
2020-04-24 18:08:05

【羅姆SiC-MOSFET 試用體驗連載】羅姆第三代溝槽柵型SiC-MOSFET(之一)

TO-247-4L封裝的SCT3040KR,TO-247-3L封裝的SCT3040KL 1200V 40A插件驅(qū)動Sic Mosfet驅(qū)動電路要求1. 對于驅(qū)動電路來講,最重要的參數(shù)是門極電荷
2020-07-16 14:55:31

SiC mosfet選擇柵極驅(qū)動IC時的關鍵參數(shù)

Navitas的GeneSiC碳化硅(SiC) mosfet可為各種器件提供高效率的功率傳輸應用領域,如電動汽車快速充電、數(shù)據(jù)中心電源、可再生能源、能源等存儲系統(tǒng)、工業(yè)和電網(wǎng)基礎設施。具有更高的效率
2023-06-16 06:04:07

為何使用 SiC MOSFET

°C 時典型值的兩倍。采用正確封裝時,SiC MOSFET 可獲得 200°C 甚至更高的額定溫度。SiC MOSFET 的超高工作溫度也簡化了熱管理,從而減小了印刷電路板的外形尺寸,并提高了系統(tǒng)穩(wěn)定性
2017-12-18 13:58:36

使采用了SiC MOSFET的高效AC/DC轉換器的設計更容易

業(yè)內(nèi)先進的 AC/DC轉換器IC ,采用 一體化封裝 ,已將1700V耐壓的SiC MOSFET*和針對其驅(qū)動而優(yōu)化的控制電路內(nèi)置于 小型表貼封裝 (TO263-7L)中。主要適用于需要處理大功率
2022-07-27 11:00:52

借助高能GaN轉換器,提高充電器和適配器設計的功率密度

的能量即被傳送至輸出端。此外,開關ZVS操作可進一步提高能。這種操作可確保ACF轉換器實現(xiàn)高效性能?;旌戏醇な剑℉FB)拓撲圖3所示為CoolGaN? IPS用于混合反激式(HFB)轉換器拓撲的典型
2022-04-12 11:07:51

借助高能GaN轉換器,提高充電器和適配器設計的功率密度

的能量即被傳送至輸出端。此外,開關ZVS操作可進一步提高能。這種操作可確保ACF轉換器實現(xiàn)高效性能?;旌戏醇な剑℉FB)拓撲圖3所示為CoolGaN? IPS用于混合反激式(HFB)轉換器拓撲的典型
2022-06-14 10:14:18

幾款用于白家電各功能模塊的高能方案設計

文中介紹了幾款用于白家電各功能模塊的高能方案設計。
2021-05-10 06:06:25

反激式轉換器與SiC用AC/DC轉換器控制IC組合顯著提高效率

。準諧振控制軟開關的低EMI工作,突發(fā)模式下的輕負載時低消耗電流工作,具備各種保護功能的最尖端功能組成,且搭載為SiC-MOSFET驅(qū)動而優(yōu)化的柵極箝位電路。另外,是工業(yè)設備用的產(chǎn)品,因此支持長期供應
2018-12-04 10:11:25

如何使用電流源極驅(qū)動器BM60059FV-C驅(qū)動SiC MOSFET和IGBT?

在開啟時提供此功能。實驗驗證表明,在高負載范圍和低開關速度(《5V/ns)下,SiC-MOSFET或IGBT的電流源驅(qū)動與傳統(tǒng)方法相比,導通損耗降低了26%。在電機驅(qū)動器等應用中,dv/dt 通常限制為 5V/ns,電流源驅(qū)動器可提高效率并提供有前途的解決方案。
2023-02-21 16:36:47

如何用PQFN封裝技術提高能和功率密度?

如何用PQFN封裝技術提高能和功率密度?
2021-04-25 07:40:14

如何用碳化硅(SiC)MOSFET設計一個高性能門極驅(qū)動電路

對于高壓開關電源應用,碳化硅或SiC MOSFET帶來比傳統(tǒng)硅MOSFET和IGBT明顯的優(yōu)勢。在這里我們看看在設計高性能門極驅(qū)動電路時使用SiC MOSFET的好處。
2018-08-27 13:47:31

如何采用功率集成模塊設計出高能、高可靠性的太陽能逆變器?

如何采用功率集成模塊設計出高能、高可靠性的太陽能逆變器?
2021-06-17 06:22:27

搭載SiC-MOSFETSiC-SBD的功率模塊

1. SiC模塊的特征大電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFETSiC-SBD的功率模塊。由IGBT的尾
2019-03-12 03:43:18

有什么方法可以實現(xiàn)高能IoT設備嗎?

如何利用模塊化平臺去實現(xiàn)高能IoT設備?
2021-05-19 07:07:35

氮化鎵能否實現(xiàn)高能、高頻電源的設計?

GaN如何實現(xiàn)快速開關?氮化鎵能否實現(xiàn)高能、高頻電源的設計?
2021-06-17 10:56:45

求一個主流功率等級的高能OBC方案?

碳化硅(SiCMOSFET、超級結MOSFET、IGBT和汽車功率模塊(APM)等廣泛的產(chǎn)品陣容乃至完整的系統(tǒng)方案,以專知和經(jīng)驗支持設計人員優(yōu)化性能,加快開發(fā)周期。本文將主要介紹針對主流功率等級的高能OBC方案。
2020-11-23 11:10:00

汽車類雙通道SiC MOSFET柵極驅(qū)動器包括BOM及層圖

描述此參考設計是一種通過汽車認證的隔離式柵極驅(qū)動器解決方案,可在半橋配置中驅(qū)動碳化硅 (SiC) MOSFET。此設計分別為雙通道隔離式柵極驅(qū)動器提供兩個推挽式偏置電源,其中每個電源提供 +15V
2018-10-16 17:15:55

溝槽結構SiC-MOSFET與實際產(chǎn)品

本章將介紹最新的第三代SiC-MOSFET,以及可供應的SiC-MOSFET的相關信息。獨有的雙溝槽結構SiC-MOSFETSiC-MOSFET不斷發(fā)展的進程中,ROHM于世界首家實現(xiàn)了溝槽柵極
2018-12-05 10:04:41

淺析SiC-MOSFET

SiC-MOSFET 是碳化硅電力電子器件研究中最受關注的器件。成果比較突出的就是美國的Cree公司和日本的ROHM公司。在國內(nèi)雖有幾家在持續(xù)投入,但還處于開發(fā)階段, 且技術尚不完全成熟。從國內(nèi)
2019-09-17 09:05:05

用于LED路燈的高能驅(qū)動電源方案

取代傳統(tǒng)路燈的趨勢越來越明顯。不同于室內(nèi)LED照明產(chǎn)品,LED路燈往往功率較大,而室外應用環(huán)境更具復雜性,如何高效可靠驅(qū)動LED路燈成為設計的要點。  積極推動高能創(chuàng)新的安森美半導體充分利用在電源
2018-10-09 14:13:13

碳化硅MOSFET是如何制造的?如何驅(qū)動碳化硅場效應管?

個優(yōu)勢?! ≡O備屬性及其柵極驅(qū)動  現(xiàn)在我們已經(jīng)詳細闡述了SiC材料的特性,并了解到它在高能量應用中的參數(shù)優(yōu)于Si,現(xiàn)在是時候仔細研究器件和應用了。如上所述,意法半導體是SiC市場的佼佼者之一,讓我們
2023-02-24 15:03:59

碳化硅SiC MOSFET:低導通電阻和高可靠性的肖特基勢壘二極管

阻并提高可靠性。東芝實驗證實,與現(xiàn)有SiC MOSFET相比,這種設計結構在不影響可靠性的情況下[1],可將導通電阻[2](RonA)降低約20%。功率器件是管理各種電子設備電能,降低功耗以及實現(xiàn)碳中和
2023-04-11 15:29:18

碳化硅SiC技術導入應用的最大痛點

和更廣泛的封裝選擇將出現(xiàn),以適應更高電壓和功率等級的應用范圍?! ±纾钚碌墓苍垂矕懦焖伲ǔjP型SiC-FET)與IGBT或Si-MOSFET一樣易于驅(qū)動和使用,但在速度及較低靜態(tài)和動態(tài)損耗方面
2023-02-27 14:28:47

羅姆成功實現(xiàn)SiC-SBD與SiC-MOSFET的一體化封裝

本半導體制造商羅姆面向工業(yè)設備和太陽能發(fā)電功率調(diào)節(jié)器等的逆變器、轉換器,開發(fā)出耐壓高達1200V的第2代SiC(Silicon carbide:碳化硅)MOSFET“SCH2080KE”。此產(chǎn)品損耗
2019-03-18 23:16:12

設計中使用的電源IC:專為SiC-MOSFET優(yōu)化

。BD7682FJ-LB是AC/DC轉換器用的準諧振控制器,是全球首款*專為驅(qū)動SiC-MOSFET而優(yōu)化的IC。(*截至2015/3/25的數(shù)據(jù))您可能已經(jīng)注意到,開關要使用SiC-MOSFET時,需要為將
2018-11-27 16:54:24

請問如何推動物聯(lián)網(wǎng)的高能創(chuàng)新?

請問如何推動物聯(lián)網(wǎng)的高能創(chuàng)新?
2021-06-17 08:57:28

集成MOSFET如何提升功率密度

集成是固態(tài)電子產(chǎn)品的基礎,將類似且互補的功能匯集到單一器件中的能力驅(qū)動著整個行業(yè)的發(fā)展。隨著封裝、晶圓處理和光刻技術的發(fā)展,功能密度不斷提高,在物理尺寸和功率兩方面都提供了更高能的方案。對產(chǎn)品
2020-10-28 09:10:17

面向SiC MOSFET的STGAP2SICSN隔離式單通道柵極驅(qū)動

單通道STGAP2SiCSN柵極驅(qū)動器旨在優(yōu)化SiC MOSFET的控制,采用節(jié)省空間的窄體SO-8封裝,通過精確的PWM控制提供強大穩(wěn)定的性能。隨著SiC技術廣泛應用于提高功率轉換效率,STGAP2SiCSN簡化了設計、節(jié)省了空間,并增強了節(jié)能型動力系統(tǒng)、驅(qū)動器和控制的穩(wěn)健性和可靠性。
2023-09-05 07:32:19

SiC MOSFET選擇合適的柵極驅(qū)動芯片,需要考慮幾個方面?

SiC MOSFET與傳統(tǒng)硅MOSFET在短路特性上有所差異,以英飛凌CoolSiC? 系列為例,全系列SiC MOSFET具有大約3秒的短路耐受能力??梢岳闷骷旧淼倪@一特性,在驅(qū)動設計中考慮短路保護功能,提高系統(tǒng)可靠性。
2018-06-15 10:09:3825116

SiC MOSFET器件應該如何選取驅(qū)動負壓

近年來,寬禁帶半導體SiC器件得到了廣泛重視與發(fā)展。SiC MOSFET與Si MOSFET在特定的工作條件下會表現(xiàn)出不同的特性,其中重要的一條是SiC MOSFET在長期的門極電應力下會產(chǎn)生閾值漂移現(xiàn)象。本文闡述了如何通過調(diào)整門極驅(qū)動負壓,來限制SiC MOSFET閾值漂移的方法。
2020-07-20 08:00:006

為何使用SCALE門極驅(qū)動器來驅(qū)動SiC MOSFET

PI的SIC1182K和汽車級SIC118xKQ SCALE-iDriver IC是單通道SiC MOSFET門極驅(qū)動器,可提供最大峰值輸出門極電流且無需外部推動級。 SCALE-2門極驅(qū)動核和其他SCALE-iDriver門極驅(qū)動器IC還支持不同SiC架構中的不同電壓,允許使用SiC MOSFET進行安全有效的設計。
2020-08-13 15:31:282476

ADI隔離柵極驅(qū)動器和WOLFSPEED SiC MOSFET

ADI隔離柵極驅(qū)動器和WOLFSPEED SiC MOSFET
2021-05-27 13:55:0830

深入解讀?國產(chǎn)高壓SiC MOSFET及競品分析

電子發(fā)燒友網(wǎng)報道(文/李誠)工業(yè)4.0時代及電動汽車快速的普及,工業(yè)電源、高壓充電器對功率器件開關損耗、功率密度等性能也隨之提高,傳統(tǒng)的Si-MosFet性能已被開發(fā)的接近頂峰,SiC MOSFET
2021-09-16 11:05:374228

基于SiC MOSFET的三相全橋數(shù)字化智能驅(qū)動

出了較高要求。如何突破舵機控制器設計瓶頸,解決SiC MOSFET驅(qū)動設計難題,提高舵系統(tǒng)可靠性和抗干擾性能成為業(yè)內(nèi)探索的一個熱門
2022-04-29 16:34:103559

一文深入了解SiC MOSFET柵-源電壓的行為

具有驅(qū)動器源極引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器源極引腳的TO-247N封裝SiC MOSFET產(chǎn)品相比,SiC MOSFET柵-源電壓的行為不同。
2022-06-08 14:49:532944

橋式結構中低邊SiC MOSFET關斷時的行為

具有驅(qū)動器源極引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器源極引腳的TO-247N封裝產(chǎn)品相比,SiC MOSFET的柵-源電壓的行為不同。
2022-07-06 12:30:421114

用于SiC MOSFET的柵極驅(qū)動

STMicroelectronics (ST) 的 STGAP2SiCSN 單通道柵極驅(qū)動器旨在調(diào)節(jié)碳化硅 (SiC) MOSFET。它采用窄體 SO-8 封裝,可節(jié)省空間并具有精確的PWM 控制
2022-08-03 09:47:011355

SiC MOSFET 的優(yōu)勢和用例是什么?

SiC MOSFET 的優(yōu)勢和用例是什么?
2022-12-28 09:51:201034

驅(qū)動器和 SiC MOSFET 打開電源開關的大門

驅(qū)動器和 SiC MOSFET 打開電源開關的大門
2023-01-03 09:45:06433

大電流應用中SiC MOSFET模塊的應用

在大電流應用中利用 SiC MOSFET 模塊
2023-01-03 14:40:29491

SiC-MOSFET與Si-MOSFET的區(qū)別

從本文開始,將逐一進行SiC-MOSFET與其他功率晶體管的比較。本文將介紹與Si-MOSFET的區(qū)別。尚未使用過SiC-MOSFET的人,與其詳細研究每個參數(shù),不如先弄清楚驅(qū)動方法等與Si-MOSFET有怎樣的區(qū)別。
2023-02-08 13:43:20644

SiC MOSFET:橋式結構中柵極源極間電壓的動作-SiC MOSFET的橋式結構

在探討“SiC MOSFET:橋式結構中Gate-Source電壓的動作”時,本文先對SiC MOSFET的橋式結構和工作進行介紹,這也是這個主題的前提。
2023-02-08 13:43:23340

低邊SiC MOSFET導通時的行為

本文的關鍵要點?具有驅(qū)動器源極引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器源極引腳的TO-247N封裝SiC MOSFET產(chǎn)品相比,SiC MOSFET柵-源電壓的行為不同。
2023-02-09 10:19:20301

低邊SiC MOSFET關斷時的行為

通過驅(qū)動器源極引腳改善開關損耗本文的關鍵要點?具有驅(qū)動器源極引腳的TO-247-4L和TO-263-7L封裝SiC MOSFET,與不具有驅(qū)動器源極引腳的TO-247N封裝產(chǎn)品相比,SiC MOSFET的柵-源電壓的...
2023-02-09 10:19:20335

SiC MOSFETSiC IGBT的區(qū)別

  在SiC MOSFET的開發(fā)與應用方面,與相同功率等級的Si MOSFET相比,SiC MOSFET導通電阻、開關損耗大幅降低,適用于更高的工作頻率,另由于其高溫工作特性,大大提高了高溫穩(wěn)定性。
2023-02-12 15:29:032100

SiC MOSFET的結構及特性

SiC功率MOSFET內(nèi)部晶胞單元的結構,主要有二種:平面結構和溝槽結構。平面SiC MOSFET的結構,
2023-02-16 09:40:102935

SiC-MOSFET與Si-MOSFET的區(qū)別

本文將介紹與Si-MOSFET的區(qū)別。尚未使用過SiC-MOSFET的人,與其詳細研究每個參數(shù),不如先弄清楚驅(qū)動方法等與Si-MOSFET有怎樣的區(qū)別。在這里介紹SiC-MOSFET驅(qū)動與Si-MOSFET的比較中應該注意的兩個關鍵要點。
2023-02-23 11:27:57736

SiC MOSFET的橋式結構及柵極驅(qū)動電路

下面給出的電路圖是在橋式結構中使用SiC MOSFET時最簡單的同步式boost電路。該電路中使用的SiC MOSFET的高邊(HS)和低邊(LS)是交替導通的,為了防止HS和LS同時導通,設置了兩個SiC MOSFET均為OFF的死區(qū)時間。右下方的波形表示其門極信號(VG)時序。
2023-02-27 13:41:58737

SiC MOSFET學習筆記(五)驅(qū)動電源調(diào)研

3.1 驅(qū)動電源SiC MOSFET開啟電壓比Si IGBT低,但只有驅(qū)動電壓達到18V~20V時才能完全開通; Si IGBT 和SiC MOSFET Vgs對比 Cree的產(chǎn)品手冊
2023-02-27 14:41:099

SiC MOSFET學習筆記(三)SiC驅(qū)動方案

如何為SiC MOSFET選擇合適的驅(qū)動芯片?(英飛凌官方) 由于SiC產(chǎn)品與傳統(tǒng)硅IGBT或者MOSFET參數(shù)特性上有所不同,并且其通常工作在高頻應用環(huán)境中, 為SiC MOSFET選擇合適的柵極
2023-02-27 14:42:0479

SiC MOSFET學習筆記(四)SiC MOSFET傳統(tǒng)驅(qū)動電路保護

碳化硅 MOSFET 驅(qū)動電路保護 SiC MOSFET 作為第三代寬禁帶器件之一,可以在多個應用場合替換 Si MOSFET、IGBT,發(fā)揮其高頻特性,實現(xiàn)電力設備高功率密度。然而被應用于橋式電路
2023-02-27 14:43:028

優(yōu)化SiC MOSFET的柵極驅(qū)動的方法

在高壓開關電源應用中,相較傳統(tǒng)的硅 MOSFET 和 IGBT,碳化硅(以下簡稱“SiC”)MOSFET 有明 顯的優(yōu)勢。
2023-05-26 09:52:33462

用于 SiC MOSFET 的隔離柵極驅(qū)動器使用指南

MOSFET 與 IGBT 之間的共性和差異,以便用戶充分利用每種器件。本系列文章概述了 安森美 M 1 1200 V SiC MOSFET 的關鍵特性及驅(qū)動條件對它的影響 ,作為安森美提供的全方位
2023-06-25 14:35:02377

SiC MOSFET器件技術現(xiàn)狀分析

對于SiC功率MOSFET技術,報告指出,650-1700V SiC MOSFET技術快速迭代,單芯片電流可達200A。提升電流密度同時,解決好特有可靠性問題是提高技術成熟度關鍵。
2023-08-08 11:05:57428

如何優(yōu)化SiC柵級驅(qū)動電路?

點擊藍字?關注我們 對于高壓開關電源應用,碳化硅或 SiC MOSFET 與傳統(tǒng)硅 MOSFET 和 IGBT 相比具有顯著優(yōu)勢。SiC MOSFET 很好地兼顧了高壓、高頻和開關性能優(yōu)勢。它是電壓
2023-11-02 19:10:01361

SiC設計干貨分享(一):SiC MOSFET驅(qū)動電壓的分析及探討

SiC設計干貨分享(一):SiC MOSFET驅(qū)動電壓的分析及探討
2023-12-05 17:10:21439

SiC MOSFET的橋式結構

SiC MOSFET的橋式結構
2023-12-07 16:00:26157

SIC MOSFET驅(qū)動電路的基本要求

SIC MOSFET驅(qū)動電路的基本要求? SIC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)是一種新興的功率半導體器件,具有良好的電氣特性和高溫性能,因此被廣泛應用于各種驅(qū)動電路中。SIC
2023-12-21 11:15:49417

怎么提高SIC MOSFET的動態(tài)響應?

怎么提高SIC MOSFET的動態(tài)響應? 提高SIC MOSFET的動態(tài)響應是一個復雜的問題,涉及到多個方面的考慮和優(yōu)化。在本文中,我們將詳細討論如何提高SIC MOSFET的動態(tài)響應,并提供一些
2023-12-21 11:15:52272

已全部加載完成