0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

簡述鋰枝晶穿過陶瓷固態(tài)電解質的機制及緩解策略

鋰電聯(lián)盟會長 ? 來源:能源學人 ? 作者:Ziyang Ning ? 2021-04-29 10:20 ? 次閱讀

研究表明,相比傳統(tǒng)的鋰離子電池,使用鋰金屬作為負極和陶瓷作為固態(tài)電解質的固態(tài)電池,具有更高安全性和能量密度。然而,在實際電流密度下金屬鋰進行沉積時,往往會穿透固態(tài)電解質并導致短路,這是制約其進一步發(fā)展的最大瓶頸。先前的工作已經表明,如果電解質具有足夠高的剪切模量,通過聚合物電解質的枝晶生長將會受到抑制。

然而,剪切模量比鋰高幾個數(shù)量級的陶瓷并不能抑制枝晶的生長,表明了枝晶穿過陶瓷的機制不同于穿過聚合物的機制,并且尚不十分清楚。更加重要的是,現(xiàn)有的原位表征技術和分析對于研究鋰在固態(tài)電解質內的枝晶生長是具有挑戰(zhàn)性的。

【成果簡介】

鑒于此,?英國牛津大學Peter G. Bruce教授(通訊作者)基于高空間分辨率和相襯原位X射線計算機斷層掃描(XCT),并結合空間映射的X射線衍射,能夠跟蹤對稱電池Li/Li6PS5Cl/Li在鋰沉積過程中裂紋的演化,以及鋰進入固態(tài)電解質后的生長情況。這種硫基固態(tài)電解質不僅具有高導電率,其與鋰金屬還可形成幾納米厚的穩(wěn)定SEI。Li6PS5Cl與LAGP相比,其是研究電解質斷裂的好例子,沒有界面相的連續(xù)形成,以及通過固體電解質生長并伴隨產生體積變化,從而能夠將電解質斷裂只歸因于鋰沉積。

在鋰沉積時,靠近沉積電極的電解質中形成裂紋(圓錐形的“坑”形裂紋)。之所以形成這種裂紋,是因為裂紋擴展到最近的表面(鋰沉積電極)時可以緩解應力。并且裂紋沿孔隙率高于陶瓷平均孔隙率的路徑向鋰沉積電極表面擴展。由于較高的局域電場和電流密度,破裂的產生在鋰電極邊緣也更為普遍。

然后從剝落中形成橫向裂紋,并通過電解質傳播到剝離的電極,從而在兩極之間形成了路徑。進一步研究表明,裂紋尖端在鋰的前面?zhèn)鞑ィ嚥淮嬖谟诹鸭y尖端。此外,即使有裂紋穿過整個電解質,連接沉積電極和剝離電極,也沒有發(fā)生短路,說明裂紋在為鋰枝晶的生長傳播“開道”,鋰隨后填充在裂紋中。

本文的發(fā)現(xiàn)為固態(tài)電解質破裂和鋰枝晶的生長,以及全固態(tài)電池的失效過程提供了重要的見解。同時作者還建議將注意力更多地集中在阻止干裂紋的傳播以阻止枝晶的傳播上,例如通過陶瓷增韌和阻止裂紋生長,包括諸如纖維增強和相變增韌的策略等。

相關研究成果“Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells”為題發(fā)表在Nature Materials上。

【核心內容】

一、陶瓷電解質與鋰沉積電極的界面裂紋

e4b7a570-a871-11eb-9728-12bb97331649.png

圖1.Li/Li6PS5Cl Li電池的原位相襯XCT顯示鋰沉積引起的裂紋。

(a)Li/Li6PS5Cl/Li電池在7 MPa和1.25 mA cm -2下循環(huán)的電壓-時間曲線;(b)沿于每個鋰電極下方5像素(8.15μm)的平面拍攝的虛擬圖像切片,切片如下:

在通電流之前,在待沉積電極(i)和剝離電極(ii)上截取的切片;在前半個周期之后,沉積界面(iii)和剝離界面(iv);在連續(xù)循環(huán)((v)–(viii))之后,第一個沉積界面的演變;

(c)(i)沿b(iii)中紅色虛線的橫截面圖像切片顯示了鋰電極邊緣的剝落和電解質中100 μm的剝落。(ii)來自c(iii)位置的原始電池的橫截面圖像切片的放大圖像,表明沒有預先存在的缺陷。

(iii)放大圖像顯示在剝落下出現(xiàn)垂直裂縫,表明剝落和垂直裂縫之間存在相關性;

(d)從循環(huán)的Li/Li3N/Li對稱電池的XCT掃描獲得的橫截面圖像切片,顯示鋰電極邊緣出現(xiàn)剝落,并且在剝落下出現(xiàn)垂直裂紋。

e4f0ee3e-a871-11eb-9728-12bb97331649.png

圖2.來自體積相關性分析的最大法向3D應變圖。

來自平行于沉積電極的平面的圖像,顯示了在平面上每個點的最大法向3D應變圖(彩色圖)和在循環(huán)的不同階段中電解質的位移(箭頭),這是通過對原位XCT掃描進行DVC分析獲得的。

二、鋰沉積過程中裂紋傳播和鋰滲透到電解質中

e523f856-a871-11eb-9728-12bb97331649.png

圖3.單次Li/Li6PS5Cl/Li電池沉積過程中的原位相襯XCT虛擬橫截面,以及裂紋中鋰的沉積分析表明裂紋在鋰之前傳播。

(a)不同狀態(tài)下虛擬橫截面圖像切片;(b)相對應區(qū)域內的放大圖;(c)電壓與電荷的通過量關系圖顯示出極化的增加,并且即使裂紋在整個電解質中擴散,也沒有造成短路(電壓沒有突然下降);(d)在b中紅線所指示的區(qū)域裂縫的灰度曲線,表示在沉積鋰期間鋰在裂紋中的積累(垂直箭頭);(e)a(vi)中的放大圖像,顯示了沉積1.0 mAh cm-2后確定剝落裂紋(紅色)和垂直裂紋(藍色和黃色)的位置;(f)灰度分析顯示沉積1.0 mAh cm-2后發(fā)現(xiàn)的裂紋區(qū)域的鋰含量。

e54c9c16-a871-11eb-9728-12bb97331649.png

圖4.原位XCT裂紋和鋰沉積在裂紋內的三維渲染圖,顯示裂紋擴展先于鋰滲透。

(a-e)在沉積0.2 mAh cm-2(a),0.4 mAh cm-2(b),0.6 mAh cm-2(c),0.8mAh cm-2(d)和1.0 mAh cm-2(e)之后,渲染電池的一部分(大約1×1×1 mm3)。

在這種情況下,灰色代表空的裂紋,綠色代表鋰。圖3a中虛擬橫截面的位置由圖中的橙色虛線表示。在完全充滿鋰之前,從沉積(頂表面)到剝離(底表面)電極的整個電解質上都形成了裂紋。即使當裂紋到達剝離的電極時,在鋰進入之前的裂紋傳播是一致的,沒有短路發(fā)生。

三、循環(huán)電池中的枝晶分布

e5621ca8-a871-11eb-9728-12bb97331649.png

圖5.衍射圖顯示鋰枝晶在電極邊緣的優(yōu)先分布及其與碎裂裂紋的關系。

在Li/Li6PS5Cl/Li電池中收集1.5 mA cm-2下以1 mAh cm-2的容量循環(huán),同時在7 MPa壓力下循環(huán)五個循環(huán),直到發(fā)生短路。(a)X射線衍射圖的示意圖;(b)在電極的邊緣(i)和中心(ii)收集的X射線衍射數(shù)據;(c)在每個網格位置繪制的鋰峰的衍射強度,從而揭示了鋰枝晶的分布;(d)XCT圖像從電解質中平行于兩個電極(i)和(ii)的平面切下。

四、破碎裂紋與局部孔隙度的相關性

e58315ca-a871-11eb-9728-12bb97331649.png

圖6.原位XCT的切片和體積渲染圖像揭示了破碎裂紋與電解質內部預先存在的孔隙之間的相關性。

(a)由XCT平行且鄰近鋰沉積電極(i)的破碎裂紋成像,以及兩個虛擬橫截面圖((ii)和(iii));(b)剝落的電解質被分割,渲染和顯示為灰色,裂紋區(qū)域內的原始電解質中存在的孔顯示為紫色。

第一作者:Ziyang Ning

通訊作者:Peter G. Bruce

通訊單位:英國牛津大學

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰離子
    +關注

    關注

    5

    文章

    533

    瀏覽量

    37565
  • 電極
    +關注

    關注

    5

    文章

    803

    瀏覽量

    27132
  • X射線
    +關注

    關注

    4

    文章

    204

    瀏覽量

    50977
  • 電池
    +關注

    關注

    84

    文章

    10406

    瀏覽量

    128675

原文標題:鋰枝晶穿過陶瓷固態(tài)電解質的機制及緩解策略

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯(lián)盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    固態(tài)金屬電池的陽極夾層設計

    金屬電解質的消耗。鋰離子的不均勻沉積/剝離導致的生長和電池安全風險,阻礙了金屬電池(
    的頭像 發(fā)表于 10-31 13:45 ?115次閱讀
    全<b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池的<b class='flag-5'>鋰</b>陽極夾層設計

    固態(tài)電池中復合陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態(tài)金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
    的頭像 發(fā)表于 10-29 16:53 ?202次閱讀
    <b class='flag-5'>固態(tài)</b>電池中復合<b class='flag-5'>鋰</b>陽極上固體<b class='flag-5'>電解質</b>界面的調控

    無極電容器有電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質。電解質在無極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發(fā)表于 10-01 16:45 ?254次閱讀

    氧化物布局格局一覽 氧化物電解質何以撐起全固態(tài)?

    今年以來,各式各樣的半固態(tài)、全固態(tài)電池開始愈發(fā)頻繁且高調地現(xiàn)身,而背后均有氧化物電解質的身影。
    的頭像 發(fā)表于 05-16 17:41 ?925次閱讀

    鈮酸調控固態(tài)電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態(tài)電解質得益于其易加工性,最有希望應用于下一代固態(tài)金屬電池。
    的頭像 發(fā)表于 05-09 10:37 ?534次閱讀
    鈮酸<b class='flag-5'>鋰</b>調控<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質</b>電場結構促進鋰離子高效傳輸!

    固態(tài)金屬電池的外部壓力研究

    目前,使用易燃液體電解質的商用鋰離子電池無法滿足日益增長的高能量密度和安全性要求。用無機固態(tài)電解質(SSE)取代傳統(tǒng)的液體電解質有望在很大程度上消除
    的頭像 發(fā)表于 04-26 09:02 ?723次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池的外部壓力研究

    請問聚合物電解質是如何進行離子傳導的呢?

    在目前的聚合物電解質體系中,高分子聚合物在室溫下都有明顯的結晶性,這也是室溫下固態(tài)聚合物電解質的電導率遠遠低于液態(tài)電解質的原因。
    的頭像 發(fā)表于 03-15 14:11 ?1005次閱讀
    請問聚合物<b class='flag-5'>電解質</b>是如何進行離子傳導的呢?

    不同類型的電池的電解質都是什么?

    聚合物,如固態(tài)電池,固態(tài)陶瓷和熔融鹽(如鈉硫電池)中使用的聚合物。 鉛酸電池 鉛酸電池使用硫酸作為電解質。充電時,隨著正極板上形成氧化鉛(PbO2),酸變得更稠密,然后在完全放電時變成
    的頭像 發(fā)表于 02-27 17:42 ?1299次閱讀

    固態(tài)電解質離子傳輸機理解析

    固態(tài)電解質中離子的遷移通常是通過離子擴散的方式實現(xiàn)的。離子擴散是指離子從一個位置移動到另一個位置的過程,使得電荷在材料中傳輸。
    發(fā)表于 01-19 15:12 ?2238次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質</b>離子傳輸機理解析

    關于固態(tài)電解質的基礎知識

    固態(tài)電解質在室溫條件下要求具有良好的離子電導率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
    的頭像 發(fā)表于 01-19 14:58 ?1.7w次閱讀
    關于<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質</b>的基礎知識

    固態(tài)金屬電池負極界面設計

    固態(tài)金屬電池有望應用于電動汽車上。相比于傳統(tǒng)液態(tài)電解液,固態(tài)電解質不易燃,高機械強度等優(yōu)點。
    的頭像 發(fā)表于 01-16 10:14 ?696次閱讀
    全<b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池負極界面設計

    固態(tài)金屬電池內部固化技術綜述

    高能量密度金屬電池是下一代電池系統(tǒng)的首選,用聚合物固態(tài)電解質取代易燃液態(tài)電解質是實現(xiàn)高安全性和高比能量設備目標的一個重要步驟。
    的頭像 發(fā)表于 12-24 09:19 ?3876次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池內部固化技術綜述

    一種有機-無機非對稱固態(tài)電解質,實現(xiàn)長循環(huán)穩(wěn)定的高壓鋰電池

    通過非對稱有機-無機復合固態(tài)電解質的協(xié)同效應,改善了不同陰極(LiFePO4和LiNi0.8Mn0.1Co0.1O2)/鋰電池的循環(huán)穩(wěn)定性,顯著拓寬了電化學穩(wěn)定窗口(5.3 V)并大大增強了
    的頭像 發(fā)表于 12-10 09:23 ?1636次閱讀
    一種有機-無機非對稱<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質</b>,實現(xiàn)長循環(huán)穩(wěn)定的高壓鋰電池

    重識全面電動化語境下的固態(tài)電池

    固態(tài)電池≠高鎳三元+硅基/金屬負極+固態(tài)電解質
    的頭像 發(fā)表于 12-09 14:52 ?919次閱讀

    離子-偶極作用誘導實現(xiàn)PVDF電解質游離殘留溶劑封裝

    由于高離子導電性和機械強度,聚(氟乙烯)(PVDF)電解質越來越受到固態(tài)鋰電池的關注,但高活性殘留溶劑嚴重困擾著循環(huán)穩(wěn)定性。
    的頭像 發(fā)表于 11-21 10:09 ?2060次閱讀
    離子-偶極作用誘導實現(xiàn)PVDF<b class='flag-5'>電解質</b>游離殘留溶劑封裝